Environmental impact of fertilizer use and slow release of mineral nutrients as a response to this challenge

Open access

Abstract

This paper presents the most important issues relating to the influence of mineral fertilizers on both the natural environment and human and animal health. The physiological, environmental and economic impact of fertilizer production and application, resulted from a low assimilation of mineral components by crops, has been described. The research on the development and production of a large and diverse group of materials with slow-release properties that can increase the effectiveness of nutrient uptake, alleviate the negative influence of fertilizers on the environment and reduce labor and energy consumption associated with the use of conventional fertilizers, has been reviewed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zapata F. (2008). Introduction to nitrogen management in agricultural systems. In: Guide. Nitr. Managem. Agric. Syst. Vienna: IAEA.

  • 2. Mosier A.R. Syers J.K. & Freney J.R. (2004). Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment St. Louis MI: Island Press.

  • 3. Brown L.R. (1999). Feeding nine billion. In L.R. Brown C. Flavin H. French (Eds.) State of the world: A Worldwatch Institute report on progress toward a sustainable society New York: W.W. Norton & Company.

  • 4. United Nations Department of Economic and Social Affairs Population Division (2013). World Population Prospects: The 2012 Revision DVD Edition.

  • 5. International Fertilizer Industry Association Statistics Market Outlooks; http://www.fertilizer.org/MarketOutlooks.html (accessed Aug 26 2015).

  • 6. van Cleemput O. Zapata F. & Vanlauwe B. (2008). Use of tracer technology in mineral fertilizer management. In: Guide. Nitr. Managem. Agric. Syst. Vienna: IAEA.

  • 7. Dobermann A. (2005). Nitrogen use efficiency - state of the art. In: Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers Frankfurt: IFA.

  • 8. Smil V.A. (1999). Nitrogen in crop production: An account of global flows. Global Biogeochem. Cycl. 3 647–662. DOI: 10.1029/1999GB900015.

  • 9. Fan X. Li F. Liu F. & Kumar D. (2004). Fertilization with a new type of coated urea: Evaluation for nitrogen efficiency and yield in winter wheat. J. Plant Nutr. 27 853–865. DOI: 10.1081/PLN-120030675.

  • 10. Hauck R.D. (1985). Slow release and bio-inhibitor-amended nitrogen fertilizers. In: O.P. Engelstad (Ed.) Fert. Technol. Use Madison WI: SSSA.

  • 11. Shaviv A. & Mikkelsen R.I. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation – a review. Fert. Res. 35 1–12. DOI: 10.1007/BF00750215.

  • 12. Trenkel M.E. (2010). Controlled-release and stabilized fertilizers in agriculture Paris: IFA.

  • 13. Chien S.H. Prochnow L.I. Tu S. & Snyder C.S. (2011). Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutr. Cycl. Agroecosyst. 89 229–255. DOI: 10.1007/s10705-010-9390-4.

  • 14. Finck A. (1992). Fertilizers and their efficient use. In: D.J. Halliday M.E. Trenkel W. Wichmann (Eds.). World Fert. Use Man. Paris: IFA.

  • 15. Shaviv A. (2000). Advances in controlled release fertilizers. Adv. Agron. 71 1–49.

  • 16. Górecki H. (2003). The environmental impact of fertilizer production and use. Przem. Chem. 82(8–9) 833–836.

  • 17. Hofman G. & van Cleemput O. (2004). Nitr. Soil Plant. Paris: IFA.

  • 18. Follett J.R. Follett R.F. & Herz W.C. (2010). Environmental and human impacts of reactive nitrogen. In: J.A. Delgado R.F. Follett (Eds.) Adv. Nitr. Managem. Water Qual. Ankeny IA: SWCS.

  • 19. EEA Raport No7/2005. (2005). Source apportionment of nitrogen and phosphorus inputs into the aquatic environment Copenhagen: EEA.

  • 20. Townsend A.R. Howarth R.W. Bazzaz F.A. Booth M.S. Cleveland C.C. Collinge S.K. Dobson A.P. Epstein P.R. Holland E.A. Keeney D.R. Mallin M.A. Rogers C.A. Wayne P. & Wolfe A.H. (2003). Human health effects of a changing global nitrogen cycle Ecol. Environ. 1(5) 240–246. http://dx.doi.org/10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2

  • 21. Smith J.E. & Beutler E. (1966). Methaemoglobin formation and reduction in man and various animal species. Am. J. Physiol. 210(2) 347–350.

  • 22. Newbould P. (1989). The use of nitrogen fertilizer in agriculture. Where do we go practically and ecologically? Plant and Soil. 115 297–311. DOI: 10.1007/BF02202596.

  • 23. Forman D. (1989). Are nitrates a significant risk factor in human cancer? Cancer Surv. 8 443–458.

  • 24. Freibauer A. (2003). Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. Eur. J. Agron. 19(2) 135–160. DOI: 10.1016/S1161-0301(02)00020-5.

  • 25. Sharpley A.N. & Menzel R.G. (1987). The impact of soil and fertiliser phosphorus on the environment. Adv. Agron. 41 297–324.

  • 26. Sims J.T. (1998). Phosphorus soil testing: innovations for water quality protection. Commun. Soil Sci. Plant Anal. 29 1471–1478. DOI: 10.1080/00103629809370044.

  • 27. Hedley M. & McLaughlin M. (2005). Reactions of phosphate fertilizers and by-products in soils. In: J.T. Sims A.N. Sharpley (Eds) Phosph.: Agric. Environ. Madison WI: CSSA SSSA.

  • 28. Chien S.H. Prochnow L.I. & Cantarella H. (2009). Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 102 267–322. DOI: 10.1016/S0065-2113(09)01008-6.

  • 29. Mortvedt J.J. (1987). Cadmium levels in soils and plants from some long-term soil fertility experiments in the United States. J. Environ. Qual. 16 137–143. DOI:10.2134/jeq1987.00472425001600020008x.

  • 30. Directive 2000/60/EC of the European Parliament and of the Council. (2000). DzU UE L00.327.

  • 31. Directive 91/676/EWG of the European Parliament. (1991).

  • 32. Matson P.A. Naylor R. Ortiz-Monasterio I. (1998). Integration of environmental agronomic and economic aspects of fertilizer management. Science 280 112–115. DOI: 10.1126/science.280.5360.112.

  • 33. Craswell E.T. & Godwin D.C. (1984). The efficiency of nitrogen fertilizers applied to cereals in different climates. Adv. Plant Nutr. 1 1–9.

  • 34. Roberts T.L. (2008). Improving nutrient use efficiency. Turk. J. Agric. For. 32 177–182.

  • 35. Association of American Plant Food Control Officials (AAPFCO). (1997). Official Publication No. 50 T-29. West Lafayette IN USA: AAPFCO.

  • 36. Griessbach R. & Eissner W. (1926). DE Patent No. 431585. Berlin: DPMA.

  • 37. Rohner L.V. & Wood A.P. (1947). US Patent No. 2415705. Washington D.C.: USPTO.

  • 38. Clapp J.P. (1991). Properties and uses of liquid ureatriazone-based nitrogen fertilizers Fert. Res. 28 229–233. DOI: 10.1007/BF01049755.

  • 39. Jahns T. Ewen H. & Kaltwasser H. (2003). Biodegradability of urea-aldehyde condensation products. J. Polym. Environ. 11(4) 155–159. DOI: 10.1023/A:1026052314695.

  • 40. Koivunen M.E. & Horwath W.R. (2004). Effect of management history and temperature on the mineralization of methylene urea in soil. Nutr. Cycling Agroecosyst. 68(1) 25–35. DOI: 10.1023/B:FRES.0000012232.56756.f0.

  • 41. Alexander A. & Helm H.U. (1990). Ureaform as a slow release fertiliser: A review. J. Plant Nutr. Soil Sci. 153(4) 249–255. DOI: 10.1002/jpln.19901530410.

  • 42. Lunt O.R. & Clark S.B. (1969). Properties and value of 11-diureido isobutane (IBDU) as a long-lasting nitrogen fertilizer. J. Agric. Food Chem. 17(6) 1269–1271. DOI: 10.1021/jf60166a053.

  • 43. Jahns T. & Schepp R. (2001). Isobutylidenediurea degradation by Rhodococcus erythropolis. Biodegradation 12(5) 317–323. DOI: 10.1023/A:1014335602141.

  • 44. Kikushima T. Hatano T. & Takahashi A. (1970). JP Patent No. 45000874 B4 19700112. Tokyo: JPO.

  • 45. Ushioda T. (1969). Development and commercial scale of CDU (slow acting fertilizer) technology. Jpn. Chem. Q. 5(4) 27–32.

  • 46. Shimizu T. (1987). Glycoluril as a slow release nitrogen fertilizer. Soil. Sci. Plant Nutr. 33 291–298. DOI: 10.1080/00380768.1987.10557574.

  • 47. Okuwaki A. & Okabe T. (1991). Development of a new route to oxamide from coal and ammonia Trends Inorg. Chem. 2 145–158.

  • 48. Mosdell D.K. Daniel W.H. & Freeborg R.P. (1987). Melamine and ammeline as nitrogen sources for turfgrasses. Fert. Res. 11(1) 79–86. DOI: 10.1007/BF01049566.

  • 49. Hayase T. & Kurihara J. (1972). JP Patent No. 47006377 B4 19720223. Tokyo: JPO.

  • 50. Hepburn C. Young S. & Arizal R. (1987). Rubber matrix for the slow release of urea fertilizer. Am. Chem. Soc. Div. Polym. Chem. 28 94–96.

  • 51. Hepburn C. & Arizal R. (1988). Slow-release fertilizers based on natural rubber. Br. Polym. J. 20(6) 487–491. DOI: 10.1002/pi.4980200605.

  • 52. Hepburn C. & Arizal R. (1989). A controlled-release urea fertilizer. Part 1: The encapsulation of urea fertilizer by rubber: processing and vulcanization procedures Plast. Rubber Compos. Process. Appl. 12(3) 129–134.

  • 53. Hepburn C. & Arizal R. (1989). A controlled-release urea fertilizer. Part 2: Preparation of the rubber-urea matrix and the split-feeding mixing technique. Plast. Rubber Compos. Process. Appl. 12(3) 135–140.

  • 54. Hepburn C. Young S. & Arizal R. (1989). A controlled-release urea fertilizer. Part 3: Soil leaching and growth trials Plast. Rubber Compos. Process. Appl. 12(3) 141–146.

  • 55. Hassan Z.A. Young S.D. Hepburn C. & Arizal R. (1990). An evaluation of urea-rubber matrices as slow-release fertilizers. Fert. Res. 22 63–70. DOI: 10.1007/BF01116180.

  • 56. Abdel Bary E.M. El-Shekeil A.G. Helaly F.M. Sarhan A.A. & Abdel Razik H.H. (1992). Sustained-release natural rubber formulations for urea. Plast. Rubber Compos. Process. Appl. 17(2) 99–107.

  • 57. Helaly F.M. & Abo-Elela S.I. (1990). Protection of surface water from eutrophication via controlled release of phosphate fertilizer. J. Control. Rel. 12(1) 39–44. DOI: 10.1016/0168-3659(90)90181-R.

  • 58. Helaly F.M. Abdel-Bary E.M. Sarhan A.A. & Abdel-Razik H.H. (1993). Minimization of water pollution and environmental problems via controlled-release styrene-butadiene rubber formulations containing ammonium nitrate. Plast. Rubber Compos. Process. Appl. 19(2) 111–115.

  • 59. Helaly F.M. & Nashar D.E. (2002). Slow-release rubber formulations containing ZnSO4. Polym. Test. 21(8) 867–875.

  • 60. Abd El-Kader A.A. & Attia M. (2006). Nutrients release and biological aspects of butadiene styrene - fertilizer mixtures. Egypt. J. Soil Sci. 46(1) 69–77.

  • 61. Joyce D.C. Bell L.C. Asher C.J. & Edwards D.G. (1988). Thermoplastic matrix controlled-release zinc fertilizers. I. Laboratory characterization. Fert. Res. 17(3) 235–250. DOI: 10.1007/BF01049580.

  • 62. Joyce D.C. Bell L.C. Edwards D.G. & Asher C.J. (1988). Thermoplastic matrix controlled-release zinc fertilizers. II. Effect of soil and formulation characteristics on zinc emission. Fert. Res. 17(3) 251–266. DOI: 10.1007/BF01049581.

  • 63. Joyce D.C. Asher C.J. Edwards D.G. & Bell L.C. (1988). Thermoplastic matrix controlled-release zinc fertilizers. III. Zinc nutrition of linseed on a sand and a clay. Fert. Res. 17(3) 267–283. DOI: 10.1007/BF01049582.

  • 64. Perez M.G. Rueda J.I.P Mateos F.B. & Marin J.P. (1999). Slow-release fertilizer in the form of emulsion. Chem. Biochem. Eng. Q. 13(1) 21–26.

  • 65. Lunt O.R. Kofranek A.M. & Clark S.B. (1964). Availability of minerals from magnesium ammonium phosphates J. Agric. Food Chem. 12(6) 497–504. DOI: 10.1021/jf60136a005.

  • 66. de-Bashan L.E. & Bashan Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer. Water Res. 38 4222–4246. DOI:10.1016/j.watres.2004.07.014.

  • 67. Grzmil B. & Wronkowski J. (2004). Processes for removing and recovering phosphates from wastewaters. Chem. Rev. 83(6) 275–280.

  • 68. Matynia A. Hutnik N. Piotrowski K. Wierzbowska B. & Koralewska J. (2009). Recovery of phosphate ions by continuous precipitation and crystallization of struvite in DTM type crystallizer with jet pump. Progr. Environ. Sci. Technol. 2 986–993.

  • 69. Rahman M.M. Salleh M.A.M. Rashid U. Ahsan A. Hossain M.M. & Ra C.S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arab. J. Chem. 7 139–155. DOI: 10.1016/j.arabjc.2013.10.007.

  • 70. Solihin Zhang Q. Tongamp W. & Saito F. (2010). Mechanochemical route for synthesizing KMgPO4 and NH4MgPO4 for application as slow-release fertilizers. Ind. Eng. Chem. Res. 49(5) 2213–2216. DOI: 10.1021/ie901780v.

  • 71. Tongamp W. Zhang Q. & Saito F. (2008). Mechanochemical route for synthesizing nitrate form of layered double hydroxide. Powder Technol. 185(1) 43–48. DOI: 10.1016/j.powtec.2007.09.013.

  • 72. Zhang Q. Solihin & Saito F. (2009). Mechanochemical synthesis of slow-release fertilizers through incorporation of alumina composition into potassium/ammonium phosphates. J. Amer. Ceram. Soc. 92(12) 3070–3073. DOI: 10.1111/j.1551-2916.2009.03291.x.

  • 73. Solihin Zhang Q. Tongamp W. & Saito F. (2010). Mechanochemical synthesis of kaolin-KH2PO4 and kaolin-NH4H2PO4 complexes for application as slow release fertilizer. Powder Technol. 212(2) 354–358. DOI: 10.1016/j.powtec.2011.06.012.

  • 74. Yuan W. Solihin Zhang Q. Kano J. & Saito F. (2014). Mechanochemical formation of K-Si-Ca-O compound as a slow-release fertilizer. Powder Technol. 260 22–26. http://dx.doi.org/10.1016/j.powtec.2014.03.072

  • 75. Bolan N.S. Hedley M.J. & Loganathan P. (1993). Preparation forms and properties of controlled-release phosphate fertilizers. Fert. Res. 35 13–24. DOI: 10.1007/BF00750216.

  • 76. Rajan S.S.S. Watkinson J.H. & Sinclair A.G. (1996). Phosphate rock for direct application to soils. Adv. Agron. 57 77–159. DOI: 10.1016/S0065-2113(08)60923-2.

  • 77. Skut J. Hoffmann J. Hoffmann K. (2011). Evaluation of the progress of sulfuric acid acidulation of phosphate rocks. Przem. Chem. 90(5) 1024-1028.

  • 78. Skut J. Hoffmann J. & Hoffmann K. (2012). Temperature and moisture influence on the curing process of PAPR type fertilizer products. Pol. J. Chem. Technol. 14(3) 77–82. DOI: 10.2748/v10026-012-0106-1.

  • 79. Ando J. (1987). Thermal phosphates. In: F.T. Nielsson (Ed.) Man. Fert. Proces. New York: Marcel Dekker Inc.

  • 80. Ranawat P. Kumar K.M. & Sharma N.K. (2009). A process for making slow-release phosphate fertilizer from low-grade rock phosphate and siliceous tailings by fusion with serpentinite. Curr. Sci. 96(6) 843–848.

  • 81. Guimond R.J. & Hardin J.M. (1989). Radioactivity released from phosphate-containing fertilizers and from gypsum. Int. J. Radiat. Appl. Instrum. Part C 34(2) 309–315. DOI: 10.1016/1359-0197(89)90238-5.

  • 82. Scholten L.C. & Timmermans C.W.M. (1996). Natural radioactivity in phosphate fertilizers. Fert. Res. 43 103–107. DOI: 10.1007/BF00747688.

  • 83. Ioannides K.G. Mertzimekis T.J. Papachristodoulou C.A. & Tzialla C.E. (1997). Measurements of natural radioactivity in phosphate fertilizers. Sci. Total Environ. 196(1) 63–67. DOI: 10.1016/S0048-9697(96)05390-9.

  • 84. Roselli C. Desideri D. & Meli M.A. (2009). Radiological characterization of phosphate fertilizers: Comparison between alpha and gamma spectrometry. Microchem. J. 91(2) 181–186. DOI: 10.1016/j.microc.2008.10.003.

  • 85. Wacławska I. & Szumera M. (2003) Thermal analysis of glasses for proecological applications. J. Thermal Anal. Calorim. 72(3) 1065–1072.

  • 86. Wacławska I. & Szumera M. (2009). Reactivity of silicate-phosphate glasses in soil environment. J. Alloys Compd. 468(1–2) 246–253. DOI: 10.1023/A:1025059424522

  • 87. Sułowska J. Wacławska I. & Olejniczak Z. (2013). Structural studies of copper-containing multicomponent glasses from the SiO2-P2O5-K2O-CaO-MgO system. Vib. Spectrosc. 65 44–49. http://dx.doi.org/10.1016/j.vibspec.2012.11.013

  • 88. Sułowska J. Wacławska I. & Olejniczak Z. (2014). Effect of glass composition on the interactions between structural elements in Cu-containing silicate-phosphate glasses. J. Thermal Anal. Calorim. 116(1) 51–59. DOI: 10.1007/s10973-014-3705-7.

  • 89. Mandlule A. Doehler F. van Wuellen L. Kasuga T. & Brauer D.S. (2014). Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J. Non-Cryst. Solids 392–393 31–38. DOI: 10.1016/j.jnoncrysol.2014.04.002.

  • 90. Qiu Q. & Hlavacek V. (2010). Energy estimation on CRN process of fly ash as a slow-release nitrogen fertilizer. Ind. Eng. Chem. Res. 49(12) 5939–5944. DOI: 10.1021/ie100391y.

  • 91. Virkar A.N. Misra S.N. Sharma N. Ray H.S. & Paul A. (1987). Thermal analysis and x-ray diffraction studies on controlled release fertilizers prepared by incorporating nutrients into blast furnace slag. Thermochim. Acta 111 135–142. DOI: 10.1016/0040-6031(87)88042-5.

  • 92. Yao Y. Hamada E. Sato K. Akiyama T. & Yoneyama T. (2014). Identification of the major constituents of fused potassium silicate fertilizer. ISIJ Int. 54(4) 990–993. DOI: http://dx.doi.org/10.2355/isijinternational.54.990.

  • 93. Ming D.W. & Allen E.R. (2001). Use of natural zeolites in agronomy horticulture and environmental soil remediation. Rev. Mineral. Geochem. 45 619–654. DOI: 10.2138/rmg.2001.45.18.

  • 94. Pereira E.I. Minussi F.B. da Cruz C.C.T. Bernardi A.C.C. & Ribeiro C. (2012). Urea-montmorillonite-extruded nanocomposites: a novel slow-release material. J. Agric. Food Chem. 60(21) 5267–5272. DOI: 10.1021/jp507826j.

  • 95. Ray S.K. Varadachari Ch. & Ghosh K. (1993). Novel slow-releasing micronutrient fertilizers. 1. Zinc compounds. Ind. Eng. Chem. Res. 32(6) 1218–1227. DOI: 10.1021/ie00018a030.

  • 96. Ray S.K. Varadachari Ch. & Ghosh K. (1997). Novel slow-releasing micronutrient fertilizers. 2. Copper compounds. J. Agric. Food Chem. 45(4) 1447–1453. DOI: 10.1021/jf960499.

  • 97. Bhattacharya I. Bandyopadhyay S. Varadachari Ch. & Ghosh K. (2007). Development of a novel slow-releasing iron-manganese fertilizer compound. Ind. Eng. Chem. Res. 46(9) 2870–2876. DOI: 10.1021/ie060787n.

  • 98. Bhattacharya I. Bandyopadhyay S. Ghosh K. & Varadachari Ch. (2008). New slow-releasing molybdenum fertilizer. J. Agric. Food Chem. 56(4) 1343–1349. DOI: 10.1021/jf072878g.

  • 99. Chandra P.K. Ghosh K. & Varadachari Ch. (2009). A new slow-releasing iron fertilizer. Chem. Eng. J. 155(1–2) 451–456. DOI: 10.1016/j.cej.2009.07.017.

  • 100. Grzmil B.U. & Kic B. (1995). Potassium sodium and calcium polyphosphates with controlled solubility. J. Agric. Food Chem. 43(9) 2463–2470. DOI: 10.1021/jf00057a028.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1005 474 13
PDF Downloads 461 208 8