Dynamic-accumulative operation policy of continuous distillation for the purification of anisole

Open access


In the B10 isotope enrichment industry, the purification of anisole mixture makes great sense. A dynamic-accumulative operation policy of continuous distillation (DACD) with repeated filling and dumping of the still is proposed for the separation of trace heavy impurities in the recycled anisole. To simulate and optimize the purification process of anisole, a mathematical model of DACD is derived, and the computer codes are developed in the MATLAB environment. Moreover, the experiment is performed in a pilot-scale distillation column. The results show that the experimental date agrees well with simulation results. DACD could solve the difficulty of flow rate control when the bottom flow rate is very small in continuous distillation. The size of the still in this operation mode is also smaller than that in batch distillation. And the yield of anisole is raised to 99.91%. In a word, DACD is especially suitable for separating trace heavy impurities from the recycled anisole.

1. Palko, A.A. & Drury, J.S. (1969). The Chemical Fractionation of Boron Isotopes. Adv. Chem. Ser. 89(3), 40–56. DOI: 10.1021/ba-1969-0089.ch003.

2. Conn, A.L. & Wolf, J.E. (1958). Large-Scale Separation of Boron Isotopes. Ind. Eng. Chem. 50(9), 1231–1234. DOI: 10.1021/ie50585a024.

3. Herbst, R.S. & McCandless, F.P. (1994). Improved Donors for the Separation of the Boron Isotopes by Gas-Liquid Exchange Reactions. Sep. Sci. 29(10), 1293–1310. DOI: 10.1080/01496399408006941.

4. Verbeke, J.M. & Leung, K.N. (2000). Development of a sealed-accelerator-tube neutron generator. J. Vujic. Appl. Radiat. Isot. 53(4–5), 801–805. DOI: 10.1016/S0969-8043(00)00262-1.

5. Angelone, M., Atzeni, S. & Rollet, S. (2002). Conceptual study of a compact accelerator-driven neutron source for radioisotope production, boron neutron capture therapy and fast neutron therapy. Nucl. Instrum. Methods Phys. Res., Sect. A. 487(3), 585–594. DOI: 10.1016/S0168-9002(02)00399-6.

6. Palko, A.A. (1959). Separation of Boron Isotopes in the Bench-Scale Boron Fluoride-Anisole Unit. Ind. Eng. Chem. 51(2), 121–124. DOI: 10.1021/ie50590a029.

7. Qiu, L. (1990). The Principle of Chemical Separation of Isotopes (pp.192–199). China: Atomic Energy Press.

8. Oi, T., Shimazaki, H., Ishii, R. & Hosoe, M. (1997). Boron Isotope Fractionation in Liquid Chromatography with Boron-Specific Resins as Column Packing Material Sep. Sci. Technol. 32(11), 1821–1834. DOI: 10.1080/01496399708000739.

9. Ivanov, V.A. & Katalnikov, S.G. (2001). Physico-chemical and engineering principles of boron isotopes separation by using BF3–ANISOLE•BF3 SYSTEM. Sep. Sci. Technol. 36(8–9), 1737–1768. DOI: 10.1081/SS-100104760.

10. Wang, Q.Z., Xiao, Y.K., Wang, Y.H., Zhang, C.G. & Wei, H.Z. (2002). Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron. Chin. J. Chem. Eng. 20(1), 45–50. DOI: 10.1002/cjoc.20020200110.

11. Cui, J., Zhang, W.J. & Miao, F.H. (2012). Dynamic Simulation of the Boron Isotopes Separation by Chemical Exchange Method. Adv. Mater. Res. 442, 62–66. DOI: 10.4028/www.scientific.net/AMR.442.62.

12. Huang, Y.P., Cheng, S. & Zhang, W.J. (2012). Gas purification and collection process of high aboundance of 10BF3. Chin. J. Chem. Eng. 40(1), 68–72. From http://lib.cqvip.com/qk/92951X/201201/40589685.html

13. Huang, Y., Cheng, S., Xu, J. & Zhang, W.J. (2011). Research on chemical exchange process of boron isotope separation. Procedia Engineering. 18, 151–156. DOI: 10.1016/j.proeng.2011.11.024.

14. Song, S., Mu, Y.J., Li, X.F. & Bai, P. (2010). Advances in boron-10 isotope separation by chemical exchange distillation Ann. Nucl. Energy. 37(1), 1–4. DOI: 10.1016/j.anucene.2009.10.008.

15. Zheng, W., Zhang, W.J. & Xu, J. (2011). Influencing factors on separating boron isotope by boron trifluoride and anisole system. Chin. J. Chem. Eng. 39(11), 17–20. From http://www.cnki.com.cn/Article/CJFDTotal-IMIY201111006.htm

16. Katalnikov, S.G., Dmitrevskaya, L.I. & Voloshchuk, A.M. (1970). Maximum concentration of impurities in anisole and phenetole during the use of their complexes with boron trifluoride for separating boron isotopes. Tr. Mosk. Khim.-Tekhnol. Inst.65, 55–59. From http://d.wanfangdata.com.cn/ExternalRe-source-tws200601012%5E27.aspx

17. Pang, B.L. (2007). Simulation and Experiment of Purifying Anisole. Unpublished master dissertation, Tianjin University, Tianjin, China.

18. Ma, S.S. (2007). Application of Artificial Neural Network in modeling Anisole Distillation Column. Unpublished master dissertation, Tianjin University, Tianjin, China.

19. Luo, Y.Q., Yuan, X.G., Yang, Z.J. & Liu, C.J. (2005). A Novel Operation Policy for Dilute Component Separation-Quasi-batch Distillation. Chin. J. Chem. Eng. 13(03), 338–342, from http://www.cnki.com.cn/article/cjfdtotal-zhgc200503010.htm

20. Dong, H.X., Guo, Y.J. & Zhu, R.K. (2002). The Separation of Trace Components in Rare Solution and the Choice of Separation Method. IJAST 29(1), 55–57. DOI: 10.3969/j.issn.1009-671X.2002.01.020.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 9
PDF Downloads 31 31 6