Novel process integration for biodiesel blend in membrane reactive divided wall (MRDW) column

Open access


The paper proposes a novel process integration for biodiesel blend in the Membrane assisted Reactive Divided Wall Distillation (MRDW) column. Biodiesel is a green fuel and grade of biodiesel blend is B20 (%) which consist of 20% biodiesel and rest 80% commercial diesel. Instead of commercial diesel, Tertiary Amyl Ethyl Ether (TAEE) was used as an environment friendly fuel for blending biodiesel. Biodiesel and TAEE were synthesized in a pilot scale reactive distillation column. Dual reactive distillation and MRDW were simulated using aspen plus. B20 (%) limit calculation was performed using feed flow rates of both TAEE and biodiesel. MRDW was compared with dual reactive distillation column and it was observed that MRDW is comparatively cost effective and suitable in terms of improved heat integration and flow pattern.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Singh A.P. Thompson J.C. & Brian He B. (2004). A Continuous flow Reactive Distillation Reactor for Biodiesel Preparation from Seed oils Can. Soc. Engineer. Agric. Food Biol. Syst. 1–11. DOI: 10.7451/CBE.2004.

  • 2. Serio M. De. Tesser R. & Pengmei Lu. (2008). Heterogeneous catalyst for biodiesel production. Ener. Fuel. 22 207–217. DOI: 10.1021/ef700250g.

  • 3 Kiss A.A. Dimian A.C. & Rothenberg G. (2008). Biodisel by Catalytic Reactive Distillation Powered by Metal Oxides Ener. Fuel. 22 598–604. DOI: 10.1021/ef700265y.

  • 4. Atadashi I.M. Aroua M.K. Abdul A.R. & Sulaiman N.M.N. (2011). Membrane biodiesel production and refining technology: A critical review. Renew. Sustain. Rev. 5051–5062. DOI: 10.1016/j.rser.2011.07.051.

  • 5. Aiouache F. & Goto S. (2003). Reactive Distillation-pervaporation hybrid column for tert-amyl alcohol etherification with ethanol. Chem. Engineer. Sci. 28 2465–2477. DOI: 10.1016/s0009-2509(03)00116-7.

  • 6. Steinigweg S. & Gmehling J. (2004). Transesterification process by combination of reactive distillation and Pervaporation. Chem. Engineer. Proces. 43 447–456. DOI: 10.1016/s0255-2701(03)00129.6.

  • 7. Liu K. Tong Z. Liu Li. & Feng X. (2005). Separation of organic compounds from water by pervaporation in the production of n butyl acetate via esterification by reactive distillation J. Membr. Sci. 256 193–201. DOI: 10.1016/j.memsci.2005.02.020.

  • 8. He B.B. Singh A.P. & Thompson J.C. (2005). Experimental Optimization of a Continuous Flow reactive distillation Reactor for Biodiesel Production. Am. Soc. Agric. Engin. 48 2237–2243.

  • 9. He B.B. Singh A.P. & Thompson J.C. (2006). A Novel Continuous Flow Reactor Using Reactive Distillation For Bio-diesel Production Am. Soc. Agric. Engin. 49 107–112.

  • 10. Israel F. Gomez-castro Ramirez V.R. Hernandez J.G.S. & Hernandez S. (2010). Feasability study of a thermally coupled reactive distillation process for biodiesel production Chem. Engineer. Proces. 49 262–269. DOI: 10.1016/j.cep.2010.02.002.

  • 11. Wang S.J. Wong D.S.H. & Yu S.W. (2008). Design and control of transesterification reactive distillation with thermal coupling. Comput. Chem. Engineer. 32 3030–3037. DOI: 10.1016/j.compcheneng.2008.04.001.

  • 12. Silva N.D.L.D. Satander C.M.G. & Batistella C.B. (2010). Biodiesel Production from Integration between Reaction and Separation System: Reactive Distillation Process. Appl. Biochem. Biotechnol. 161 245–254. DOI: 10.1007/s/2010-009-8882-7.

  • 13. Simasattikul L. Sricharansakunchai P. Patcharvorachot Y. Assabumrungrat S. & Arpornwichanop A. (2011). Reactive Distillation for Biodiesel Production from Soyabean oil. Korean J. Chem. Engineer. 28 649–655. DOI: 10.1007/s/11814-010-0440-z.

  • 14. Demirel Y. (2011). Using Thermally Coupled Reactive Distillation Columns in Biodisel Production. Chem. Biomolec. Res. Pap. 36 838–4847. DOI:10.1016/

  • 15. Rios L.F. Martinez E.L. Silva N.L. Dantas T.S.S. Maciel R. & Maciel M.R.W. (2012). Biodiesel Production by an Integrated Reactive Separation System: A Comparative Study. Chem. Engineer. Trans. 26 255–260. DOI: 10.3303/CET1226043.

  • 16. Budiman A. (2012). A step toward industrial plant of continuous Biodiesel production using reactive distillation process. Int. J. Environ. Bioen. 3 180–192.

  • 17. Kiss A.A. Gabriel J. Hernandez S. Bildea C.S. Galindo E.Y.M. & Hernandez S. (2012). Reactive DWC leading the way to FAME and fortune. Fuel. 95 352–359. DOI: 10.1016/j.fuel.2011.12.064.

  • 18. Kiss A.A. & Ignat R.M. (2012). Enhanced methanol recovery and glycerol separation in biodiesel production-DWC makes it happen. Appl. Energy. 99 146–153. DOI: 10.1016/j.apenergy.2012.04.019.

  • 19. Kiss A.A. & Suszwalak D.J.P.C. (2012). Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Separat. Purificat. Technol. 86 70–78. DOI:10.1016/j.seppur.2011.10.022.

  • 20. Chongkhong S. Tongurai C. & Chepattananondh P. (2009). Continuous esterification for biodiesel production from palm fatty acid distillate using economical process. Renew. Ener. 34 1059–1063. DOI: 10.1016/j.renene.2008.07.008.

  • 21. Castro F.I.G. Ramirez V.R. Hernandez J.G.S. Castro S.H. & Halwagi M.M. El. (2013). Simulation study on biodiesel production by reaction distillation with methanol at high pressure and temperature: Impact on costs and pollutant emissions. Comput. Chem. Engineer. 52 204–215. DOI: 10.1016/j.comchemeng.2013.01.007.

  • 22. Cossio-Vargas E. Hernandez S. Segovia-Hernandez J.G. & Cano-Rodriguez M.I. (2011). Simulation study of production of biodiesel using feedstock mixtures of fatty acids in complex reactive distillation columns. The Ener. J. 36 6289–6297. DOI: 10.1016/

  • 23. Cossio-Vargas E. Munoz F.O.B. Hernandez S. Hernandez J.G.S. & Rodriguez M.I.C. (2012). Thermally coupled distillation sequences: Stea Arief Budiman A step toward industrial plant of continuous Biodiesel production using reactive distillation process. Int. J. Environ. Bioener. 3 180–192.

  • 24. Giwa A. & Giwa S.O. (2012). Optimization of Tranesterification Reaction Integrated Distillation Column Using Design Expert and Excel Solver. Int. J. Adv. Sci. Tech. Res. 6 423–435.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 155 4
PDF Downloads 136 90 4