Encapsulation of L-ascorbic acid via polycaprolactone-polyethylene glycol-casein bioblends

Open access

Abstract

The aim of this study was to encapsulate, L-ascorbic acid, in biopolymers in order to obtain (i) enhancing its encapsulation efficiency (ii) increasing drug release ratio using different pH mediums. Microparticles based on polycaprolactone, polyethylene glycol and casein are prepared by spray drying technique. Microparticles are in vitro characterized in terms of yield of production, particle size, morphology, encapsulation efficiency, and drug release. In this manner, the importance of the study is producing of a stable and effective drug encapsulation system by PCL-PEG-CS polymer mixture by spray dryer. We achieved minimum 27.540±0.656 μm particle size with 0.512 m2/g surface area, 84.05% maximum drug loading, and 68.92% drug release ratio at pH 9.6. Release profiles are fitted to previously developed kinetic models to differentiate possible release mechanisms. The Korsmeyer–Peppas model is the best described each release scenario, and the drug release is governed by non-Fickian diffusion at pH 9.6. Our study proposed as an alternative or adjuvants for controlling release of L-ascorbic acid.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chakkarapani P. Subbiah L. Palanisamy S. Bibiana A. Ahrentorp F. Jonasson C. & Johansson C. (2015). Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release. J. Magn. Magn. Mater. 380 285–294. DOI: 10.1016/j.jmmm.2014.11.006.

  • 2. Zhou G. Zhao Y. Hu J. Shen L. Liu W. & Yang X. (2013). A new drug-loading technique with high efficiency and sustained-releasing ability via the Pickering emulsion interfacial assembly of temperature/pH-sensitive nanogels. React. Funct. Polym. 73 1537–1543. DOI: 10.1016/j.reactfunctpolym.2013.02.011.

  • 3. Ozsagiroglu E. Iyisan B. & Avcibasi Guvenilir Y. (2013). Comparing the In-Vitro Biodegradation Kinetics of Commercial and Synthesized Polycaprolactone Films in Different Enzyme Solutions. Ekoloji. 86 90–96. DOI: 10.5053/ekoloji.2013.8611.

  • 4. Xu X. Khan M.A. & Burgess D.J. (2012). A quality by design (QbD) case study on liposomes containing hydrophilic API: II. Screening of critical variables and establishment of design space at laboratory scale. Int. J. Pharm. 423 543–553. DOI: 10.1016/j.ijpharm.2011.11.036.

  • 5. Patel A.R. & Velikov K.P. (2011). Colloidal delivery systems in foods: A general comparison with oral drug delivery. LWT-Food Sci. Technol. 44 1958–1964. DOI: 10.1016/j.lwt.2011.04.005.

  • 6. Huang M. Xu Q. & Deng X.X. (2014). L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). J. Plant Physiol. 171 1205–1216. DOI: 10.1016/j.jplph.2014.03.010.

  • 7. Khalid N. Kobayashi I. Neves MA. Uemura K. Nakajima M. & Nabetani H. (2014). Monodisperse W/O/W emulsions encapsulating l-ascorbic acid: Insights on their formulation using microchannel emulsification and stability studies. Colloid Surface A. 458 69–77. DOI: 10.1016/j.colsurfa.2014.04.019.

  • 8. Beck-Broichsitter M. Paulus I.E. Greiner A. & Kissel T. (2015). Modified vibrating-mesh nozzles for advanced spray-drying applications. Eur. J. Pharm. Biopharm. 92 96–101. DOI: 10.1016/j.ejpb.2015.03.001.

  • 9. Rassu G. Nieddu M. Bosi P. Trevisi P. Colombo M. Priori D. Manconi P. Giunchedi P. & Gavini E. Boatto G. (2014). Encapsulation and modified-release of thymol from oral microparticles as adjuvant or substitute to current medications. Phytomedicine. 21 1627–1632. DOI: 10.1016/j.phymed.2014.07.017.

  • 10. Carneiro H.C.F. Tonon R.V. Grosso C.R.F. & Hubinger MD (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 115 443–451. DOI: 10.1016/j.jfoodeng.2012.03.033.

  • 11. Bürki K. Jeon I. Arpagaus C. & Betz G. (2011). New insights into respirable protein powder preparation using a nano spray dryer. Int. J. Pharm. 408 248–256. DOI: 10.1016/j.ijpharm.2011.02.012.

  • 12. Erbay Z. & Koca N. (2014). Exergoeconomic performance assessment of a pilot-scale spray dryer using the specific exergy costing method. Biosyst. Eng. 122 127–138. DOI: 10.1016/j.ijpharm.2011.02.012.

  • 13. Paudel A. Worku ZA. Meeus J. Guns S. & Van den Mooter G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. Int. J. Pharmaceut. 453 253–284. DOI: 10.1016/j.ijpharm.2011.02.012.

  • 14. Van der Schueren L. Steyaert I. De Schoenmaker B. & De Clerck K. (2012). Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohyd. Polym. 88 1221–1226. DOI: 10.1016/j.carbpol.2012.01.085.

  • 15. Van der Schueren L. De Meyer T. Steyaert I. Ceylan Ö. Hemelsoet K. Van Speybroeck V. & De Clerck K. (2013). Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohyd. Polym. 91 284–293. DOI: 10.1016/j.carbpol.2012.08.003.

  • 16. Horton D.C. Derveer D.V. Krzystek J. Telser J. Pittman T. Crans D.C. & Holder A.A. (2014). Spectroscopic Characterization of L-ascorbic Acid-induced Reduction of Vanadium(V) Dipicolinates: Formation of Vanadium(III) and Vanadium(IV) Complexes from Vanadium(V) Dipicolinate Derivatives. Inorg. Chim. Acta. 420 112–119. DOI: 10.1016/j.ica.2013.12.001.

  • 17. Porras-Saavedra J. Palacios-González E. Lartundo-Rojas L. Garibay-Febles V. Yáñez-Fernández J. Hernández-Sánchez H. Gutiérrez-López G. & Alamilla-Beltrán L. (2015). Microstructural properties and distribution of components in microparticles obtained by spray-drying. J. Food Eng. 152105–112. DOI: 10.1016/j.jfoodeng.2014.11.014.

  • 18. Grund J. Koerber M. Walther M. & Bodmeier R. (2014). The effect of polymer properties on direct compression and drug release from water-insoluble controlled release matrix tablets. Int. J. Pharmaceut. 469 94–101. DOI: 10.1016/j.ijpharm.2014.04.033.

  • 19. Kadajji V.G. & Betageri G.V. (2011). Water Soluble Polymers for Pharmaceutical Applications. Polymers. 3(4) 1972–2009. DOI: 10.3390/polym3041972.

  • 20. Li F. Li X. & Li B. (2011). Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin. J. Magn. Magn. Mater. 323 2770–2775. DOI: 10.1016/j.jmmm.2011.05.045.

  • 21. Orellana B.R. & Puleo D.A. (2014). Cyanide induced self-assembly and copper recognition in human blood serum by a new carbazole AIEE active material. Mater. Sci. Eng. C 43 418–423. DOI: 10.1016/j.msec.2014.07.041.

  • 22. Alexa I.F. Ignat M. Popovici R.F. Timpu D. & Popovici E. (2012). In vitro controlled release of antihypertensive drugs intercalated into unmodified SBA-15 and MgO modified SBA-15 matrices. Int. J. Pharmaceut. 436 111–119. DOI: 10.1016/j.ijpharm.2012.06.036.

  • 23. Moribe K. Makishima T. Higashi K. Liu N. Limwikrant W. Ding W. Masuda M. Shimizu T. & Yamamoto K. (2014). Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dissolution. Int. J. Pharmaceut. 469 190–196. DOI: 10.1016/j.ijpharm.2014.04.005.

  • 24. Jensen D.M. Cun D. Maltesen M.J. Frokjaer S. Nielsen H.M. & Foged C. (2010). Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J. Control Release 142 138–145. DOI: 10.1016/j.jconrel.2009.10.010.

  • 25. Wu Y. Zou L. Mao J. Huang J. & Liu S. (2014). Stability and encapsulation efficiency of sulforaphane micro-encapsulated by spray drying. Carbohyd. Polym. 102 497–503. DOI: 10.1016/j.carbpol.2013.11.057.

  • 26. Yuzbasi N.S. & Selçuk N. (2011). Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR. Fuel Process. Technol. 92 1101–1108. DOI: 10.1016/j.fuproc.2011.01.005.

  • 27. Wang H. Helwa Y. & Rempel G.L. (2013). Preparation of polyacrylamide based microgels with different charges for drug encapsulation. Eur. Polym. J. 49(6) 1479–1486. DOI: 10.1016/j.eurpolymj.2013.04.003.

  • 28. Kalhapure R.S. Mocktar C. Sikwal D.R. Sonawane S.J. Kathiravan M.K. Skelton A. & Govender T. (2014). Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticle. Colloid. Surface B. 117 303–311. DOI: 10.1016/j.colsurfb.2014.02.045.

  • 29. Post A.E. Arnold B. Weiss J. & Hinrichs J. (2012). Effect of temperature and pH on the solubility of caseins: Environmental influences on the dissociation of αS- and β-casein. J. Dairy. Sci. 95 1603–1616. DOI: 10.3168/jds.2011-4641.

  • 30. Zhou Y. Song F. Li Y.S. Liu J.Q. Lu S.Y. Ren H.L. Liu Z.S. Zhang Y.Y. Yang L. Li Z.H. Zhang J.H. & Wang X.R. (2013). Double-antibody based immunoassay for the detection of β-casein in bovine milk samples. Food Chem. 141(1) 167–173. DOI: 10.1016/j.foodchem.2013.03.010.

  • 31. de Almeida R.R. Magalhães H.S. de Souza J.R.R. Trevisan M.T.S. Vieira I.G.P. Feitosa J.P.A. Araújo T.G. & Ricardo N.M.P.S. (2015). Exploring the potential of Dimorphandra gardneriana galactomannans as drug delivery systems. Ind. Crop. Prod. 69 284–289. DOI: 10.1016/j.indcrop.2015.02.041.

  • 32. England C.G. Miller M.C. Kuttan A. Trent J.O. & Frieboes H.B. (2015). Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur. J. Pharm. Biopharm. 92 120–129. DOI: 10.1016/j.ejpb.2015.02.017.

  • 33. Ozsagiroglu E. Hayta E.N. & Avcibasi Guvenilir Y. (2015). Preparation of bioblends using spray dryer and their applications in drug delivery systems. Asian J. Chem. 27(10) 3734–3738. DOI: 10.14233/ajchem.2015.18958.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 452 156 6
PDF Downloads 145 59 4