Preparation of CaCO3-SiO2 composite with core-shell structure and its application in silicone rubber

Open access


A new CaCO3-SiO2 composite with core-shell structure was successfully prepared by mechano-chemistry method (MCM). SEM and FTIR indicated that SiO2 particles were homogeneously immobilized on the surface of CaCO3. The well dispersion of this CaCO3-SiO2 composite into silicone rubber can not only reduce the usage amount of SiO2, but also improve the mechanical properties of silicone rubber. By the calculation, the theoretical numbers of the SiO2 particles is about 10 times as large as that of CaCO3 particles in the CaCO3-SiO2 composite. Mixing CaCO3-SiO2 composite in silicone rubber can enhance the breaking strength of the silicone rubber about 18% as high as that when mixing the pure SiO2. And the elongation at break is about 14% less than that of adding the pure SiO2 sample.

1. Pan, Q.W., Wang, B.B., Chen, Z.H. & Zhao, J.Q. (2013). Reinforcement and antioxidation effects of antioxidant functionalized silica in styrene-butadiene rubber. Mater. Design 50, 558–565. DOI: 10.1016/j.matdes.2013.03.050.

2. Xu, T.W., Jia, Z.X., Luo, Y.F., Jia, D.M. & Peng, Z. (2015). Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Appl. Surf. Sci. 328, 306–313. DOI: 10.1016/j.apsusc.2014.12.029.

3. Wu, Y. (2007). Impinging Streams: Fundamentals, Properties and Applications, Beijing, China: Chem. Ind. Press 269–282. DOI: 10.1016/B978-044453037-0/50043-4.

4. Ansarifar, A., Azhar, A., Ibrahim, N., Shiah, S.F. & Lawton, J.M.D. (2005). The use of a silanised silica filler to reinforce and crosslink natural rubber. Int. J. Adhes. Adhes. 25, 77–86. DOI: 10.1016/j.ijadhadh.2004.04.002.

5. Liu, H.F., Gan, L., Li, R.S. & Yang, G.Z. (2007). Study on the new preparation method of white carbon black from rice husk. Inorg. Chem. Ind. 39(2), 40–42. DOI: 10.3969/j.issn.1006-4990.2007.02.014.

6. Suzuki, N., Kiba, S., Kamachi, Y., Miyamoto, N. & Yamauchi, Y. (2011). Mesoporous silica as smart inorganic filler: preparation of robust silicone rubber with low thermal expansion property. J. Mater. Chem. 21, 5338–5344. DOI: 10.1039/C0JM03767B.

7. Suzuki, N., Kiba, S., Kamachi, Y., Miyamoto, N. & Yamauchi, Y. (2012). Unusual reinforcement of silicone rubber compounds containing mesoporous silica particles as inorganic fillers. Phys. Chem. Chem. Phys. 14, 3400–3407. DOI: 10.1039/C2CP23864K.

8. Ma, H.W. (2005). Industrial minerals and rocks (3rd ed.). Beijing, China: Chem. Ind. Press.

9. Bunkholt, I. & Kleiv, R.A. (2013). The colouring effect of pyrrhotite and pyrite on micronised calcium carbonate slurries for the paper industry. Miner. Eng. 52, 104–110. DOI: 10.1016/j.mineng.2013.04.020.

10. Hai, L., Yingbo, D. & Leyong, J. (2009). Preparation of calcium carbonate particles coated with titanium dioxide. Int. J. Miner. Metal. Mater. 16(5), 592–597. DOI: 10.1016/S1674-4799(09)60102-3.

11. Ardo, S. & Meyer, G.J. (2009). Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 38, 115–164. DOI: 10.1039/B804321N.

12. Rey, T., Chagnon, G., Lecam, J.B. & Favier, D. (2013). Influence of the temperature on the mechanical behavior of filled and unfilled silicone rubbers. Polym. Test. 32, 492–501. DOI: 10.1016/j.polymertesting.2013.01.008.

13. Standardization Administration of China (2009). Rubber, vulcanized or thermoplastic-determination of tensile stress-strain properties. GB/T 528-2009. Beijing.

14. Alonso, M., Satoh, M. & Miyanami, K. (1990). The effect of random positioning on the packing of particles adhering to the surface of a central particle. Powder Technol. 62, 35–40. DOI: 10.1016/0032-5910(90)80020-Y.

15. Paparazzo, E. (1993). Synchronous radiation photo-emission and scanning Auger micro-probe study of hydrated silica. Appl. Surf. Sci. 72(4), 313–319. DOI: 10.1016/0169-4332(93)90368-L.

16. Casarin, M., Falcomer, D., Glisenti, A., Natile, M.M., Poli, F. & Vittadini, A. (2005). Experimental and QM/MM investigation of the hydrated silica surface reactivity. Chem. Phys. Lett. 405, 459–464. DOI: 10.1016/j.cplett.2005.02.076.

17. Caruso, F., Lichtenfeld, H., Giersig, M. & Mohwald, H. (1998). Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J. Am. Chem. Soc. 120, 8523–8524. DOI: 10.1021/la015636y.

18. Kanta, A., Sedev, R. & Ralston, J. (2007). Fabrication of silica-on-titania and titania-on-silica nanoparticle assemblies. Colloid. Surf. A., 292, 1–7. DOI: 10.1016/j.colsurfa.2006.05.041.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 234 234 16
PDF Downloads 86 86 7