NOx photocatalytic degradation on gypsum plates modified by TiO2-N,C photocatalysts

Open access


In presented studies the photocatalytic decomposition of NOx on gypsum plates modified by TiO2-N,Cphotocatalysts were presented. The gypsum plates were obtained by addition of 10 or 20 wt.% of different types of titanium dioxide, such as: pure TiO2 and carbon and nitrogen co-modified TiO2 (TiO2-N,C) to gypsum. TiO2-N,C photocatalysts were obtained by heating up the starting TiO2 (Grupa Azoty Zakłady Chemiczne Police S.A) in the atmosphere of ammonia and carbon at the temperature: 100, 300 i 600ºC. Photocatalyst were characterized by FTIR/DRS, UVVis/DR, BET and XRD methods. Moreover the compressive strength tests of modified gypsum were also done. Photocatalytic activity of gypsum plates was done during NOx decomposition. The highest photocatalytic activity has gypsum with 20 wt.% addition of TiO2-N,C obtained at 300ºC.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Fujishima A.X. Zhang & Tryk D.A. (2007). Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy 32(14) 2664–2672. DOI: 10.1016/j.ijhydene.2006.09.009.

  • 2. Lackhoff M. Prieto X. Nestle N. Dehn F. & Niessner R. (2003). Photocatalytic activity of semiconductor-modified cement-influence of semiconductor type and cement angeing. Appl. Catal. B-Environ. 43(3) 205–216. DOI: 10.1016/S0926-3373(02)00303-X.

  • 3. Meng T. Yu Y. Qian X. Zhan S. & Qian K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 29 241–245. DOI: 10.1016/j.conbuildmat.2011.10.047.

  • 4. Beydoun D. Amal R. Low G. & McEvoy S. (1999). Role of nanoparticles in photocatalysis. J. Nanopart. Res. 1 439–458. DOI: 10.1023/A:1010044830871.

  • 5. Hunger M. Husken G. & Brouwers J. (2008). Photocatalysis applied to concrete products – part 1: principles and test procedure. Zkg. Int. 61 77–85.

  • 6. Bolte G. (2009). Innovative building materials-reduction of pollutants with TioCem. Zkg. Int. 62 63–70.

  • 7. Toma F.L. Bertrand G. Klein D. & Coddet C. (2004). Photocatalytic removal of nitrogen oxides via titanium dioxide. Environ. Chem. Lett. 2(3) 117–121. DOI: 10.1007/s10311-004-0087-2.

  • 8. Carneiro J.O. Teixeira V. Martins A.J. Mendes M. Ribeiro M. & Vieira A. (2009). Surface properties of doped and undoped TiO2 thin films deposited by magnetron sputtering. Vacuum 83(10) 1303–1306. DOI: 10.1016/j.vacuum.2009.03.028.

  • 9. Rachel A. Subrahmanyam M. & Boule P. (2002). Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilized form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B-Environ. 37(4) 301–308. DOI: 10.1016/S0926-3373(02)00007-3.

  • 10. Boccaccini A.R. Rossetti M. Roether J.A. Zein S.H.S. & Ferraris M. (2009). Development of titania coatings on glass foams. Constr. Build. Mater. 23(7) 2554–2558. DOI: 10.1016/j.conbuildmat.2009.02.019.

  • 11. Ramirez A.M. Demeestere K. De Belie N. Mäntylä T. & Levänen E. (2010). Titanium dioxide coated cementitious materials for air purifying purposes: preparation characterization and toluene removal potential. Build. Environ. 45(4) 832–838. DOI: 10.1016/j.buildenv.2009.09.003.

  • 12. Lackhoff M. Prieto X. Nestle N. Dehn F. & Niessner R. (2003). Photocatalytic activity of semiconductor-modified cement – influence of semiconductor type and cement ageing. Appl. Catal. B-Environ. 43(3) 205–216. DOI: 10.1016/S0926-3373(02)00303-X.

  • 13. Meng T. Yu Y. Qian X. Zhan S. & Qian K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 29 241–245. DOI: 10.1016/j.conbuildmat.2011.10.047.

  • 14. Yousefi A. Allahverdi A. & Hejazi P. (2013). Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Constr. Build. Mater. 41 224–230. DOI: 10.1016/j.conbuildmat.2012.11.057.

  • 15. Pereira A. Palha F. Brito J. & Silvestre J.D. (2011). Inspection and diagnosis system for gypsum plasters in partition walls and ceilings. Constr. Build. Mater. 25(4) 2146–2156. DOI: 10.1016/j.conbuildmat.2010.11.015.

  • 16. U.E. Directive 2008/50/EC of the European Parliament and of the Council on ambient air quality and cleaner air for Europe Official Journal of the European Union L152/1 2008.

  • 17. Berglund B. Brunekreef B. Knoppel H. Undvaij T. Maroni M. Mblhave L. & Skov P. (1991). Effects of Indoor Air Pollution on Human Health – Report no. 10 Commission of the European Communities Luxembourg.

  • 18. Zhao J. & Yang X.D. (2003). Photocatalytic oxidation for indoor air purification: a literature review. Build. Environ. 38 645–654. DOI: 10.1016/S0360-1323(02)00212-3.

  • 19. Todorova N. Giannakopoulou T. Karapati S. Petridis D. Vaimakis T. & Trapalis C. (2014). Composite TiO2/Clays Materials for Photocatalytic NOx Oxidation. Appl. Surf. Sci. DOI: 10.1016/j.apsusc.2014.07.020 (In press Accepted Manuscript Available online 12 July 2014).

  • 20. Kampa M. & Castanas E. (2008). Human health effects of air pollution. Environ. Pollut. 151 362–367. DOI: 10.1016/j.envpol.2007.06.012.

  • 21. Kukadia V. & Palmer J. (1998). The effect of external atmospheric pollution on indoor air quality: a pilot study. Energy Build. 27 223–230. DOI: 10.1016/S0378-7788(97)00044-3.

  • 22. Wu Z. Wang H. Liu Y. & Gu Z. (2008). Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method. J. Hazard. Mater. 151(1) 17–25. DOI: 10.1016/j.jhazmat.2007.05.050.

  • 23. Janus M. Bubacz K. Zatorska J. Kusiak-Nejman E. Czyżewski A. Przepiórski J. & Morawski A.W. (2014). Induced self-cleaning properties towards Reactive Red 198 of the cement materials loaded with co-modified TiO2/NC photocatalysts. React. Kinet. Mechanism Catal. In press DOI: 10.1007/s11144-014-0749-4.

  • 24. Nguyen N.H. & Bai H. (2014). Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method. J. Environ. Sci. 26 1180–1187. DOI: 10.1016/S1001-0742(13)60544-6.

  • 25. Ballari M.M Yu Q.L. & Brouwers H.J.H. (2011). Experimental study of the NO and NO2 degradation by photocatalytically active concrete. Catal. Today. 161 175–180 DOI: 10.1016/j.cattod.2010.09.028.

  • 26. Haruehansapong S. Pulngern T. & Chucheepsakul S. (2013). Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2. Constr. Build. Material. 50 471–477. DOI: 10.1016/j.conbuildmat.2013.10.002.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 452 230 4
PDF Downloads 146 93 2