Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

Open access


In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro) of thin films. Morphological changes of mouse fibroblasts (L929 cell line) after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Branemark P.I. Breine U. Adell R. Hansson B. Lindström J. & Ohlsson A. (1969). Intra-osseous anchorage of dental prostheses. I. Experimentalstudies. Scand J Plast Reconstr Surg. 3 81–100. DOI: 10.3109/02844316909036699.

  • 2. Hanawa T. (1991). Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12 767–774. DOI: 10.1016/0142-9612(91)90028-9.

  • 3. Brunette D.M. Tengvall P. Textor M. & Thomsen P. (2001). Titanium in medicine. DOI: 10.1007/978-3-642-56486-4.

  • 4. Choubey A. Balasubramaniam R. & Basu B. (2004). Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti-6Al-4V in simulated physiological environment. J. All. Comp. 381 288–294. DOI: 10.1016/j.jallcom.2004.03.096.

  • 5. Azevedo C.R.F. (2003). Failure analysis of a commercially pure titanium plate for osteosynthesis. Engine. Fail. Anal. 10 153–164. DOI:10.1016/S1350-6307(02)00067-5.

  • 6. Eisenbarth E. Valten D. Mullee M. Thull R. & Breme J. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25 5705–5713. DOI:10.1016/j.biomaterials.2004.01.021.

  • 7. Zitter H. & Plenk H.J. (1987). The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J. Biomed Mater. Res. 21 881–896. DOI: 10.1002/jbm.820210705.

  • 8. Cui W.F. Jin L. & Zhou L. (2013). Surface characteristics and electrochemical corrosion behavior of a pre-anodized microarc oxidation coating on titanium alloy. Materi. Sci. Engine.: C 33(7) 3775–3779. DOI: 10.1016/j.msec.2013.05.011.

  • 9. Taubert A. Mano J.F. Rodríguez-Cabello J.C. (2013). Biomater. Surf. Sci. DOI: 10.1002/9783527649600.

  • 10. Yamauchi R. Morita A. & Tsuji T. (2000). Pacemaker dermatitis from titanium. Cont. Dermat. 42 52–53. PMID: 10644034.

  • 11. Thomas P. Bandl W.D. Thomas P. Bandl W. Maier S. Summer B. & Przybilla B. (2006). Hypersensitivity to titanium osteosynthesis with impaired fracture healing eczema and T-cell hyperresponsiveness in vitro: case report and review of the literature. Contact Dermatitis 55 199–202. DOI: 10.1111/j.1600-0536.2006.00931.x.

  • 12. Verbov J. (1985). Pacemaker contact sensitivity. Cont. Dermat. 12 173. DOI: 10.1111/j.1600-0536.1985.tb01089.x.

  • 13. Brun R. & Hunziker N. (1980). Pacemaker dermatitis. Cont. Dermat. 6 212–213. DOI: 10.1111/j.1600-0536.1992.tb00867.x.

  • 14. Viraben R. Boulingues S. & Alba C. (1995). Granulomatous dermatitis after implantation of a titanium containing pacemaker. Cont. Dermat. 33 437. DOI: 10.1111/j.1600-0536.1995.tb02089.x.

  • 15. Yamauchi R. Morita A. & Tsuji T. (2000). Pacemarker dermatitis from titanium. Cont. Dermat. 42 52–53.

  • 16. Schuh A. Thomas P. Kachler W. Göske J. Wagner L. Holzwarth U. & Forst R. (2005). Allergic potential of titanium implants. Orthopade 34 327–333. DOI: 10.1007/s00132-005-0764-2.

  • 17. Suohonen R. & Kanerva L. (2001). Allergic contact dermatitis caused by palladium on titanium spectacle frames. Cont. Dermat. 45 244–245. DOI: 10.1034/j.1600-0536.2001.440409-13.x.

  • 18. Kaczmarek D. Domaradzki J. Wojcieszak D. Prociów E. Mazur M. Placido F. & Lapp S. (2012). Hardness of nanocrystalline TiO2 thin films J. Nano Res. 18/19 195–200. DOI: 10.4028/

  • 19. Domaradzki J. Kaczmarek D. Prociow E. Borkowska A. Schmeisser D. & Beuckert G. (2006). Microstructure and optical properties of TiO2 thin films prepared by low pressure hot target reactive magnetron sputtering. Thin Sol. Films 513 269–274. DOI: 10.1016/j.tsf.2006.01.049.

  • 20. Mazur M. Wojcieszak D. Kaczmarek D. Domaradzki J. Zatryb G. Misiewicz J. & Morigiel J. (2015). Effect of the nanocrystalline structure type on the optical properties of TiO2:Nd (1 at. %) thin films. Opt. Mater. DOI:

  • 21. Kwok D.Y. & Neumann A.W. (1999). Contact angle measurement and contact angle interpretation. Adv. Coll. Interfac. 81 167–249. DOI:

  • 22. Sharfrin E. & Zisman W.A. (1960). Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. J. Phys. Chem. 64 519–524. DOI: 10.1021/j100834a002.

  • 23. ISO/TC 172/SC 7/WG 3N30 Standard. (1998). Spectacle Lenses: Test Method for Abrasion Resistance.

  • 24. Blacker R. Bohling D. Coda M. & Kolosey M. (2000). Development of intrinsically conductive antireflection coatings for the ophthalmic industry 43rd Annual Technical Conference Proceedings 15–20 April 2000. Society of Vacuum Coaters (pp. 212–216). Denver Colorado USA.

  • 25. I.S. EN ISO 10993-5 Standard. (2009). Biological evaluation of medical devices: Part 5: Tests for in vitro cytotoxicity.

  • 26. Ciapetti G. Cenni E. Pratelli L. & Pizzoferrato A. (1993): In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 14(5)359–64. DOI:

  • 27. Denizot F. & Lang R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Meth. 89(2) 271–277. DOI:10.1016/0022-1759(86)90368-6.

  • 28. Garrelds I.M. Zijstra F.J. Tak J.A. Bonta I.L. Beckmann I. & Efraim B. (2005). A comparison between two methods for measuring tumor necrosis factor in biological fluids. Inflam. Res. C. 89–91. DOI: 10.1007/BF01991147.

  • 29. Heravi F. Ramezani M. Poosti M. Hosseini M. Shajiei A. & Ahrari F. (2013). In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles. J. Dent. Res. Dent. Clin. Dent. Prospect. 7(4): 192–198. DOI: 10.5681/joddd.2013.031.

  • 30. Malkoc S. Corekci B. Ulker H.E. Yalcin M. & Sengun A. (2010). Cytotoxic effects of orthodontic composites. Angle Orthod. 80 571-6. DOI: 10.2319/092809-537.1.

  • 31. Powder Diffraction File Joint Committee on Powder Diffraction Standards. (1967). ASTM Philadelphia PA Card 21-1272 – PDF.

  • 32. Finetti P. Caffio M. Cortigiani B. Atrei A. & Rovida G. (2008). Mechanism of growth and structure of titanium oxide ultrathin films deposited on Cu(001). Surf. Sci. Vol. 602 p. 1101–1113. DOI:10.1016/j.susc.2008.01.016.

  • 33. Chastain J. (Ed.). (1992). Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Eden Prairie MN.

  • 34. Mayer J.T. Diebold U. Madey T.E. & Garfunkel E. (1995). Titanium and reduced titania overlayers on titanium dioxide (101). J. Electr. Spectrosc. Relat. Phenom. Vol. 73 1–11. DOI: 10.1016/0368-2048(94)02258-5.

  • 35. Moulder J. Stickle W. Sobol P. & Bomben K. (1995). Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Inc. United States of America. ISBN 0-9648124-1-X.

  • 36. Mazur M. Domaradzki J. Wojcieszak D. Kaczmarek D. & Mazur P. (2014). Investigation of physicochemical properties of (Ti-V)Ox (4.3 at.% of V) functional thin films and their possible application in the field of transparent electronics. Appl. Surf. Sci. 304 73–80. DOI:

  • 37. Chang H. & Wang Y. (2011). Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds regenerative Medicine and Tissue Engineering - Cells and Biomaterials. ISBN 978-953-307-663-8. DOI: 10.5772/21983.

  • 38. Affrossman S. Henn G. O’Neill S.A. & Pethrick R.A. Stamm M. (1996). Surface topography and composition of deuterated polystyrene-poly(bromostyrene) blends Macromolecules 29 5010–5016. DOI: 10.1021/ma9516910.

  • 39. Dalby M.J. Giannaras D. Riehle M.O. Gadegaard N. Affrossman S. & Curtis A.S.G. (2004). Rapid fibroblast adhesion to 27nm high polimer demixed nano-topography. Biomaterials 25 77–83. DOI: 10.1016/S0142-9612(03)00475-7.

  • 40. Wachesk C.C. Pires C.A.F. Ramos B.C. Trava-Airoldi V.J. Lobo A.O. Pacheco-Soares C. Marciano F.R. & Da-Silva N.S. (2013). Cell viability and adhesion on diamond-like carbon films containing titanium dioxide nanoparticles. Appl. Surf. Sci. 266 176–181. DOI: 10.1016/j.apsusc.2012.11.124.

  • 41. Scheers M.E. Ekwall B. & Dierickx J.P. (2001). In vitro long-term cytotoxicity testing of 27 MEIC chemicals on HepG2 cells and comparison with acute human toxicity data. Toxicol. In Vitro 15 153–161. DOI:10.1016/j.toxlet.2005.07.001.

  • 42. George F. & Timbrell A. (2006). In vitro cytotoxicity assays: Comparison of LDH neutral red MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters 160 171–177F. DOI: 10.1371/journal.pone.0026908.

  • 43. Liua S. Xua L. Zhangb T. Renc G. & Yanga Z. (2010). Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267 172–177. DOI: 10.1016/j.tox.2009.11.012.

  • 44. Gurr J.R. Wang A.S. Chen C.H. Jan K.Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213 66–73. DOI: 10.1016/j.tox.2005.05.007.

  • 45. Horie M. Nishio K. Fujita K. Kato H. Endoh S. Suzuki M. Nakamura A. Miyauchi A. Kinugasa S. Yamamoto K. Iwahashi H. Murayama H. Niki E. & Yoshida Y. (2010). Cellular responses by stable and uniform ultrafine titanium dioxide particles in culture-medium dispersions when secondary particle size was 100 nm or less. Toxicology in Vitro 24 1629–1638. DOI:10.1016/j.tiv.2010.06.003.

  • 46. Park S. Lee Y.K. Jung M. Kim K.H. Chung N. Ahn E.K. Lim Y. Lee K.H. (2007). Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. InhalToxicol 19 (Suppl. 1) 59–65. DOI: 10.1080/08958370701493282.

  • 47. Sayes C.M. Wahi R. Kurian P.A. Liu Y. West J.L. Ausman K.D. Warheit D.B. & Colvin V.L. (2006). Correlating nanoscaletitania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. ToxicolSci. 92 174–185. DOI: 10.1093/toxsci/kfj197.

  • 48. Braydich-Stolle L.K. Schaeublin N.M. Murdock R.C. Jiang J. Biswas P. Schlager J.J. & Hussain M.S. (2008). Crystal structure mediates mode of cell death in TiO2 nanotoxicity. An Interdisciplinary Forum for Nanoscale Science and Technology. J. Nanopart. Res. DOI: 10.1007/s11051-008-9523-8.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 428 180 6
PDF Downloads 140 75 4