Preliminary studies of photocatalytic activity of gypsum plasters containing TiO2 co-modified with nitrogen and carbon

Open access


The conducted studies were focused on the development of the gypsum material exhibiting self-cleaning properties. To this end, the raw gypsum was mixed with unique TiO2-based photocatalysts, previously modified by nitrogen and/ or carbon doping. The photocatalytic activity of the obtained gypsum plasters was evaluated trough the degradation of model organic compound (Reactive Red 198) under UV-vis irradiation. The impact of the photocatalysts presence on the physicochemical properties of the obtained gypsum plasters was evaluated. Furthermore, the role of non-metals presence on the photocatalytic properties of the TiO2 was determined. It was confirmed that the addition of N,C co-modified titanium dioxide into gypsum bestows this material with self-cleaning properties. The highest dye removal rate was displayed by the gypsum plaster containing optimal amount (10 wt%) of co-modified TiO2/N,C photocatalyst, after 20 hours of UV-vis irradiation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Konstantinou I.K. & Albanis T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - a review. Appl. Catal. B-Environ. 49(1) 1-14. DOI: 10.1016/j.apcatb.2003.11.010.

  • 2. Karimi L. Zohoori S. & Yazdanshenas M.E. (2011). Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. J. Saudi Chem. Soc. 18(5) 581-588. DOI: 10.1016/j.jscs.2011.11.010.

  • 3. Dong W. Sun Y. Ma Q. Zhu L. Hua W. Lu X. Zhuang G. Zhang S. Gou Z. & Zhao D. (2012). Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2-SiO2 nanocomposites to various organic contaminants. J. Hazard. Mater. 229-230 307-320. DOI: 10.1016/j. jhazmat.2012.06.002.

  • 4. Houas A. Lachheb H. Ksibi M. Elaloui E. Guillard Ch. & Herrmann J.M. (2001). Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B-Environ. 31(2) 145-157. DOI: 10.1016/S0926-3373(00)00276-9.

  • 5. Rauf M.A. Meetani M.A. & Hisaindee S. (2011). An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276(1-3) 13-27. DOI: 10.1016/j.desal.2011.03.071.

  • 6. Augugliaro V. Bellardita M. Loddo V. Palmisano G. Palmisano L. & Yurdakal S. (2012). Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photoch. Photobio. C-Photochem. Rev. 13(3) 224-245. DOI: 10.1016/j.jphotochemrev.2012.04.003.

  • 7. Nakata K. & Fujishima A. (2012). TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C-Photochem. Rev. 13(3) 169-189. DOI: 10.1016/j.jphotochemrev.2012. 06.001.

  • 8. Grabowska E. Reszczyńska J. & Zaleska A. (2012). Mechanism of phenol photodegradation in the presence of pure and modifi ed-TiO2: A review. Water. Res. 46(17) 5453-5471. DOI: 10.1016/j.watres.2012.07.048.

  • 9. Carp O. Huisman C.L. & Reller A. (2004). Photoinduced reactivity of titanium oxide photoinduced reactivity of titanium oxide. Solid. State Chem. 32(1-2) 33-177. DOI: 0.1016/j.progsolidstchem.2004.08.001.

  • 10. Pinho L. & Mosquera M.J. (2013). Photocatalytic activity of TiO2-SiO2 nanocomposites applied to buildings: Infl uence of particle size and loading. Appl. Catal. B-Environ. 134 205-221. DOI: 10.1016/j.apcatb.2013.01.021.

  • 11. Fujishima A. Rao T. & Tryk D. (2000). Titanium dioxide photocatalysis. J. Photoch. Photobio. C 1(1) 1-21. DOI: 10.1016/S1389-5567(00)00002-2.

  • 12. Auvinen J. & Wirtanen L. (2008). The infl uence of photocatalytic interior paints on indoor air quality. Atmos. Environ. 42(18) 4101-4112. DOI: 10.1016/j.atmosenv.2008.01.031.

  • 13. Iguchi Y. Ichiura H. Kitaoka T. & Tanaka H. (2003). Preparation and characteristics of high performance paper containing titanium dioxide photocatalyst supported on inorganic fi ber matrix. Chemosphere 53(100) 1193-1199. DOI: 10.1016/ S0045-6535(03)00582-4.

  • 14. Wang W. Chiang L.W. & Ku Y. (2003). Decomposition of benzene in air streams by UV/TiO2 process. J. Hazard. Mater. 101(2) 133-146. DOI: 10.1016/S0304-3894(03)00169-9.

  • 15. Liuxue Z. Xiulian W. Peng L. & Zhixing S. (2007). Photocatalytic activity of anatase thin fi lms coated cotton fi bers prepared via a microwave assisted liquid phase deposition process. Surf. Coat. Tech. 201(18) 7607-7614. DOI: 10.1016/j. surfcoat.2007.02.004.

  • 16. Smits M. Chan Ch. Tytgat T. Craeye B. Costarramone N. Lacombe S. & Lenaerts S. (2013). Photocatalytic degradation of soot deposition: Self-cleaning effect on titanium dioxide coated cementitious materials. Chem. Eng. J. 222 411-418. DOI: 10.1016/j.cej.2013.02.089

  • 17. Lucas S.S. Ferreira V.M. & Barroso de Aguiar J.L. (2013). Incorporation of titanium dioxide nanoparticles in mortars - Infl uence of microstructure in the hardened state properties and photocatalytic activity. Cement Concrete Res. 43 112-120. DOI: 10.1016/j.cemconres. 2012.09.007.

  • 18. Yuranova T. Sarria V. Jardim W. Rengifo J. Pulgarin C. Trabesinger G. & Kiwi J. (2007). Photocatalytic discoloration of organic compounds on outdoor building cement panels modifi ed by photoactive coatings. J. Photoch. Photobio. A 188 (2-3) 334-341. DOI: 10.1016/j.jphotochem.2006.12.032.

  • 19. Krishnan P. Zhang M.H. Cheng Y. Tamliang Riang D. & Yu L.E. (2013). Photocatalytic degradation of SO2 using TiO2-containing silicate as a building coating material. Constr. Build. Mater. 43 197-202. DOI: 10.1016/j.conbuildmat.2013.02.012.

  • 20. Yun H. Nguyen-Phan T.D. Hung Pham V. Kweon H. Chung J.S. Lee B. & Shin E. W. (2012). Infl uence of TiO2 dimension and graphene oxide content on the self-cleaning activity of methylene blue-stained photocatalytic fi lms. Mater. Res. Bull. 47(10) 2988-2993. DOI: 10.1016/j.materresbull.2012.04.091.

  • 21. Karatasios I. Katsiotis M.S. Likodimos V. Kontos A. Papavassiliou G. Falaras P. & Kilikoglou V. (2010). Photo-induced carbonation of lime-TiO2 mortars. Appl. Catal. B-Environ. 95 (1-2) 78-86. DOI: 10.1016/j.apcatb.2009.12.011.

  • 22. Lackhoff M. Prieto X. Nestle N. Dehn F. & Niessner R. (2003). Photocatalytic activity of semiconductor-modified cement - influence of semiconductor type and cement ageing. Appl. Catal. B-Environ. 43(3) 205-216. DOI: 10.1016/S0926- -3373(02)00303-X.

  • 23. Tobaldi D.M. Tucci A. Camera-Roda G. Baldi G. & Esposito L. (2008). Photocatalytic activity for exposed building materials. J. Eur. Ceram. Soc. 28(14) 2645-2652. DOI: 10.1016/j.jeurceramsoc.2008.03.032.

  • 24. Meng T. Yu Y. Qian X. Zhan S. & Qian K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 29 241-245. DOI: 10.1016/j. conbuildmat.2011.10.047.

  • 25. Yin B. Wang J.T. Xu W. Long D.H. Qiao W.M. & Ling L.Ch. (2013). Preparation of TiO2/mesoporous carbon composites and their photocatalytic performance for methyl orange degradation. New Carbon Mater. 28 47-54. DOI: 10.1016/j.conbuildmat.2011.10.047.

  • 26. Yousefi A. Allahverdi A. & Hejazi P. (2013). Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Constr. Build. Mater. 41 224-230. DOI: 10.1016/j.conbuildmat.2012.11.057.

  • 27. Strini A. & Schiavi L. (2011). Low irradiance toluene degradation activity of a cementitious photocatalytic material measured at constant pollutant concentration by a successive approximation method. Appl. Catal. B-Environ. 103(1-2) 226-231. DOI: 10.1016/j.apcatb.2011.01.031.

  • 28. Ruot B. Plassais A. Olive F. Guillot L. & Bonafous L. (2009). TiO2-containing cement pastes and mortars: Measurements of the photocatalytic effi ciency using a rhodamine B-based colourimetric test. Sol. Energy. 83(10) 1794-1801. DOI: 10.1016/j.solener.2009.05.017.

  • 29. Hadj Aïssa A. Puzenat E. Plassais A. Herrmann J.M. Haehnel C. & Guillard Ch. (2011). Characterization and photocatalytic performance in air of cementitious materialscontaining TiO2. Case study of formaldehyde removal. Appl. Catal. B-Environ. 107 (1-2) 1-8. DOI: 10.1016/j.apcatb.2011.06.012.

  • 30. Ramirez A.M. Demeestere K. De Belie N. Mäntylä T. & Levänen E. (2010). Titanium dioxide coated cementitious materials for air purifying purposes: Preparation characterization and toluene removal potential. Build. Environ. 45(4) 832-838. DOI: 10.1016/j.buildenv.2009.09.003.

  • 31. Serna Á. del Río M. Palomo J.G. & González M. (2012). Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Constr. Build. Mater. 35 633-641. DOI: 10.1016/j.conbuildmat.2012.04.093.

  • 32. Pereira A. Palha F. de Brito J. & Silvestre J.D. (2011). Inspection and diagnosis system for gypsum plasters in partition walls and ceilings. Constr. Build. Mater. 25 2146-2156. DOI: 10.1016/j.conbuildmat.2010.11.015.

  • 33. Asahi R. Morikawa T. Ohwaki T. Aoki K. & Taga Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293 269-271. DOI: 10.1126/science.1061051.

  • 34. Mozia S. Bubacz K. Janus M. & Morawski A.W. (2012). Decomposition of 3-chlorophenol on nitrogen modifi ed TiO2 photocatalysts. J. Hazard. Mater. 203-204 128-136. DOI: 10.1016/j.jhazmat.2011.11.088.

  • 35. Bubacz K. Choina J. Dolat D. Borowiak-Paleń E. Moszyński D. & Morawski A.W. (2010). Studies on nitrogen modifi ed TiO2 photocatalyst prepared in different conditions. Mater. Res. Bull. 45 1085-1091. DOI: 10.1016/j.materresbull.2010.06.024.

  • 36. Fu J. Tian Y. Chang B. Xi F. & Dong X. (2013). Soft-chemical synthesis of mesoporous nitrogen-modifi ed titania with superior photocatalytic performance under visible light irradiation. Chem. Eng. J. 219 155-161. DOI: 10.1016/j. cej.2013.01.032.

  • 37. Kusiak-Nejman E. Janus M. Grzmil B. & Morawski A.W. (2011). Methylene Blue decomposition under visible light irradiation in the presence of carbon-modified TiO2 photocatalysts. J. Photoch. Photob. A 226(1) 68-72. DOI: 10.1016/j. jphotochem.2011.10.018.

  • 38. Magallanes-Rivera R.X. Juarez-Alvarado C.A. Valdez P. & Mendoza-Rangel J.M. (2012). Modifi ed gypsum compounds: An ecological-economical choice to improve traditional plaster. Constr. Build. Mater. 37 591-596. DOI: 10.1016/j.conbuildmat.2012.07.054.

  • 39. Wang B. Li Q. Wang W. Li Y. & Zhai J. (2011). Preparation and characterization of Fe3+-doped TiO2 on fl y ash cenospheres for photocatalytic application. Appl. Surf. Sci. 257(8) 3473-3479. DOI: 10.1016/j.apsusc.2010.11.050.

  • 40. Zhou P. Yu J. & Wang Y. (2013). The new understanding on photocatalytic mechanism of visible-light response N-S co-doped anatase TiO2 by first-principles. Appl. Catal. B-Environ. 142-143 45-53. DOI: 10.1016/j.apcatb.2013.04.063.

  • 41. Winter M. Hamal D. Yang X. Kwen H. Jones D. Rajagopalan S. Klabunde K.J. (2009). Defi ning reactivity of solid sorbents: what is the most appropriate metric? Chem. Mater. 21(12) 2367-2374. DOI: 10.1021/cm8032884.

  • 42. Janus M. Tryba B. Inagaki M. & Morawski A.W. (2004). New preparation of carbon-TiO2 photocatalysts by carbonization of n-hexane deposited on TiO2. Appl. Catal. B-Environ. 52(1) 61-67. DOI: 10.1016/j.apcatb.2004.03.011.

  • 43. Kaneko M. & Okura I. (2002). Photocatalysis: Science and Technology (1st ed.). Kodansha-Springer Tokyo.

  • 44. Maira A.J. Coronado J.M. Augugliaro V. Yeung K.L. Conesa J.C. & Soria J. (2001) Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. J. Catal. 202(2) 413-420. DOI: 10.1006/jcat.2001.3301.

  • 45. Guskos N. Guscos A. Żołnierkiewicz G. Typek J. Berczyński P. Dolat D. Grzmil B. Othani B. & Morawski A.W. (2012). EPR spectroscopic and photocatalytic properties of N-modifi ed TiO2 prepared by different annealing and water-rinsing processes. Mater. Chem. Phys. 136(2-3) 889-896. DOI: 10.1016/j.matchemphys.2012.07.062.

  • 46. Janus M. Inagaki M. Tryba B. Toyoda M. & Morawski A.W. (2006). Carbon- modifi ed TiO2 photocatalysts by ethanol carbonization. Appl. Catal. B-Environ. 63(3-4) 272-276. DOI: 10.1016/j.apcatb.2005.10.005.

  • 47. Randorn Ch. Wongnawa S. & Boonsin P. (2004). Bleaching of Methylene Blue by Hydrated Titanium Dioxide. Sci. Asia 30 149-156. DOI: 10.2306/scienceasia1513-1874.2004.30.149.

  • 48. Guskos N. Typek T. Berczyński P. Dolat D. Grzmil B. & Morawski A.W. (2012). Infl uence of annealing and rinsing on magnetic and photocatalytic properties of TiO2. Mater. Sci. Eng. B 177(2) 223-227. DOI: 10.1016/j.mseb.2011.10.017.

  • 49. Fox M.A. & Dulay M.T. (1993). Heterogeneous Photocatalysis. Chem. Rev. 93 341-357. DOI: 10.1021/cr00017a016.

  • 50. Janus M. Bubacz K. Zatorska. J. Kusiak-Nejman E. Czyżewski A. Przepiórski J. & Morawski A.W. (2014). Induced self-cleaning properties towards Reactive Red 198 of the cement materials loaded with co-modified TiO2/NC photocatalysts. Reac. Kinet. Mech. Cat. DOI: 10.1007/s11144-014-0749-4.

  • 51. Liu Y. Liu C.Y. Wei J.H. Xiong R. Pan C.X. & Shi J. (2010). Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag-TiO2 powders. Appl. Surf. Sci. 256(21) 6390-6394. DOI: 10.1016/j. apsusc.2010.04.022.

  • 52. Cong-Ju L. & Guo-Rong X. (2011). Infl uence of ammonia on the morphologies and enhanced photocatalytic activity of TiO2 micro/nanospheres. Appl. Surf. Sci. 257(11) 4951-4955. DOI: 10.1016/j.apsusc.2011.01.002.

  • 53. Wang X. & Lim T.T. (2010). Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Appl. Catal. B-Environ. 100(1-2) 355-364. DOI: 10.1016/j. apcatb.2010.08.012.

  • 54. Linsebigler A.L. Lu G. & Yates J.T. (1995). Photocatalysis on TiO2 Surfaces: Principles Mechanisms and Selected Results. Chem. Rev. 95(3) 735-758. DOI: 10.1021/cr00035a013.

  • 55. Zhang S. & Song L. (2009). Preparation of visiblelight- active carbon and nitrogen comodifi ed titanium dioxide photocatalysts with the assistance of aniline. Catal. Commun. 10(13) 1725-1729. DOI: 10.1016/j.catcom.2009.05.017.

  • 56. Kuo Y.L. Su T.L. Kung F.C. & Wu T.J. (2011). A study of parameter setting and characterization of visible-light driven nitrogen-modifi ed commercial TiO2 photocatalysts. J. Hazard. Mater. 190(1-3) 938-944. DOI: 10.1016/j.jhazmat.2011.04.031.

  • 57. Giannakas A.E. Seristatidou E. Deligiannakis Y. Konstantinou I. (2013). Photocatalytic activity of N-doped and N-F co-doped TiO2 and reduction of chromium(VI) in aqueous solution: an EPR study. Appl. Catal. B-Environ. 132-133 460-468. DOI: 10.1016/j.apcatb.2012.12.017.

  • 58. Kowalska E. Mahaney O.O.P. Abe R. & Ohtani B. (2010). Visible-light- induced photocatalysis through surface plasma excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 12 2344-2355. DOI: 10.1039/B917399D.

  • 59. Dozzi M.V. Ohtani B. & Selli E. (2011). Absorption and action spectra analysis of ammonium fl uoride- doped titania photocatalysts. Phys. Chem. Chem. Phys. 13 18217-18227. DOI: 10.1039/c1cp21558b.

  • 60. Dolat D. Mozia. S. Ohtani B. & Morawski A.W. (2013). Nitrogen iron- single modifi ed (N-TiO2 Fe-TiO2) and co-modifi ed (Fe N-TiO2) rutile titanium dioxide as visiblelight active photocatalysts. Chem. Eng. J. 225 358-364. DOI: 10.1016/j.cej.2013.03.047.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 555 395 14
PDF Downloads 139 97 4