Simulation and sensitivity analysis for heavy linear paraffins production in LAB production Plant

Open access


Linear alkyl benzene (LAB) is vastly utilized for the production of biodegradable detergents and emulsifiers. Predistillation unit is a part of LAB production plant in which that produced heavy linear paraffins (nC10-nC13). In this study, a mathematical model has been developed for heavy linear paraffins production in distillation columns, which has been solved using a commercial code. The models have been validated by the actual data. The effects of process parameters such as reflux rate, and reflux temperature using Gradient Search technique has been investigated. The sensitivity analysis shows that optimum reflux in columns are achieved.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zahedi G. Yaqubi H. & Ba-Shammakh M. (2009). Dynamic modeling and simulation of heavy paraffin dehydrogenation reactor for selective olefin production in linear alkyl benzene production plant. Appl. Catal. A. 358 (1) 1-6. DOI: 10.1016/j.apcata.2009.01.043.

  • 2. Bahasin M.M. McCain J.H. Vora B.V. Imai T. & Pujado P.R. (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl. Catal. A. 221 (1-2) 397-419. DOI: 10.1016/s0926-860x(01)00816-x.

  • 3. Kocal J.A. Vora B.V. & Imati T. (2001). Production of Linear alkylbenzenes. Appl. Catal. A. 221 (1-2) 295. DOI: 10.1016/s0926-860x(01)00808-0.

  • 4. Yangyou H. Hongye S. Jingwei L. Shengjing M. Jian C. & Jun W. (2002). Simulation and Optimization of Linear Alkylbenzenes Distillation Process. Dev. Chem. Eng. Mineral Process. 10 33-45. DOI: 10.1002/apj.5500100104.

  • 5. Dolganova I.O. Dolganov I.M. Ivashkina E.N. Ivanchina E.D. & Romanovskiy R.V. (2012). Development of approach to modeling and optimization of non-stationary catalytic processes in oil refining and petrochemistry. Pol. J. Chem. Tech. 14 (4) 22-29. DOI: 10.2478/v10026-012-0097-y.

  • 6. Bhutani N. Ray A.K. & Rangaiah G.P. (2006). Modeling simulation and multi-objective optimization of an industrial hydro-cracking unit. Ind. Eng. Chem. Res. 45 (4) 1354-1372. DOI: 10.1021/ie050423f.

  • 7. More R.K. Bulasara V.K. Uppaluri R. & Banjara V.R. (2010). Optimization of crude distillation system using aspen plus: Effect of binary feed selection on grass-root design. Chem. Eng. Res. Design. 88 (2) 121-134. DOI: 10.1016/j. cherd.2009.08.004.

  • 8. Lei Z. Yi C. & Yang. B. (2013). Design optimization and control of reactive distillation column for synthesis of tertamyl ethyl ether. Chem. Eng. Res. Design. 91 (5) 819-830. DOI: 10.1016/j.cherd.2012.08.013.

  • 9. Bai Z. Ma H. Zhang H. Ying W. & Fang D. (2013). Process simulation of dimethyl ether synthesis via methanol vapor phase dehydration. Pol. J. Chem. Tech. 15 (2) 122-127. DOI: 10.2478/pjct-2013-0034.

  • 10. Askari A. Karimi H. Rahimi M.R. & Ghanbari M. (2012). Simulation and modeling of catalytic reforming process. Petrol. Coal. 54 (1) 76-84.

  • 11. West A.H. Posarac D. & Ellis N. (2008). Assessment of four biodiesel production processes using HYSYS Plant Bioresour. Technol. 99 (4) 6587-6601. DOI: 10.1016/j.biortech. 2007.11.046.

  • 12. Agarwal M. Singh K. & Chaurasia S.P. (2012). Simulation & sensitivity analysis for biodiesel production in a reactive distillation column. Pol. J. Chem. Tech. 14 (3) 59-65. DOI: 10.2478/v10026-012-0085-2.

  • 13. Seader J.D. & Henley Ernest J. (2006). separation process principles 2nd edition John Wiley & Sons Inc. Hoboken.

  • 14. Boston J.F. & Sullivan S.L. (1974). A new class of solution methods for multi components multistage separation processes. Can. J. Chem. Eng. 52 (1) 52-63. DOI: 10.1002/ cjce.5450520108.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 264 144 1
PDF Downloads 111 62 1