Behavior of arsenic in hydrometallurgical zinc production and environmental impact

Open access

Abstract

The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS). In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5). In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine were studied. The arsenic contamination of soils in the vicinity of nonferrous metals smelter KCM SA, Plovdiv, Bulgaria as a result of zinc and lead productions has been studied.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Boyanov B. & Peltekov A. (2012). X-Ray DTA and TGA analysis of zinc sulfide concentrates and study of their charging for roasting in fl uidized bed furnace. Bulgarian Chemical Communications (44 Spec. Issue) 17-23.

  • 2. Arias-Arce V. Coronado-Falcón R. Puente Santibáñez L. & Lovera-Dávila D. (2005). Refractory of gold concentrate. Revista del Instituto de Investigación FIGMMG (8) 5-16.

  • 3. Monhemius A.J. & Swash P.M. (1999). The Removal and Stabilization of Arsenic from Copper Refining Circuits by Hydrothermal Processing. J. Miner. Met. Mat. Soc. 51 (9) 30-34.

  • 4. Yuhu L. Zhihong L. Qihou L. Zhongwei Z. Zhiyong L. & Zeng L. (2011). Removal of arsenic from arsenate complex contained in secondary zinc oxide. Hydromettalurgy 108 (3-4) 165-170.

  • 5. Shibayama A. Takasaki Y. William T. Yamatodani A. Higuchi Y. Sinagawa S. & Ono E. (2010). Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process. J. Hazard. Mater. (180) 1016-1023. DOI: 10.1016/j.jhazmat.2010.05.116.

  • 6. Sander U.F.H. (1984). Sulphur sulphur dioxide and sulphuric acid: An introduction to their industrial chemistry and technology. British Sulphur Corporation. Verlag Chemie International; English ed edition p. 415. ISBN-10: 0902777645. ISBN-13: 978-0902777644.

  • 7. Mutler W. & Warren G. (2009). Burning pyrites compared to sulphur Sulphur and Sulphuric Acid Conference 4-6 May 2009 (147-156). Johannesburg South Africa.

  • 8. Langmuir D. Mahoney J. & Rowson J. (2006). Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4 · 2H2O) and their application to arsenic behavior in buried tailings. Geochim. Cosmochim. Acta. (70) 2942-2956.

  • 9. Zhu Y. & Merkel B.J. (2001). The Dissolution and Solubility of Scorodite FeAsO4 · 2H2O: Evaluation and Simulation with PHREEQC2. Wiss. Mitt. Inst. für Geologie TU Bergakedemie Freiberg Germany (18) 1-12.

  • 10. Fleming C.A. (2009). Basic iron sulphate - a potential killer for pressure oxidation processing of refractory gold concentrates if not handled appropriately. SGS Minerals Services Technical paper -06.

  • 11. Papangelakis V.G. & Demopoulos G.P. (1990). Acid Pressure Oxidation of Arsenopyrite: Part I Reaction Chemistry Can. Metallur. Q. 29 (1) 1−12.

  • 12. Papangelakis V.G. & Demopoulos G.P. (1990). Acid Pressure Oxidation of Arsenopyrite: Part II Reaction Kinetics Can. Metallurg. Q. 29 (1) 13−20.

  • 13. Swash P.M. & Monhemius A.J. (1994). Hydrothermal precipitation from aqueous solutions containing iron (III) arsenate and sulphate. International Symposium “Hydrometallurgy ’94” 11-15 July 1994 Cambridge England 177−190.

  • 14. Jia Y.F. Demopoulos G.P. Chen N. Cutler J.N. & Jiang D.T. (2003). Preparation characterization and solubilities of adsorbed and co-precipitated iron (III)-arsenate solids (Conference Paper). Proceedings of the TMS Fall Extraction and Processing Conference 2 (2003) 1923-1935 Hydrometallurgy 2003: Proceedings of the 5th International Symposium 24-27 August 2003 Vancouver Canada Code 62514.

  • 15. Dutrizac J.E. Jambor J.L. & Chen T.T. (1987). Behaviour of Arsenic During Jarosite Precipitation: Reactions at 150 degree C and the Mechanism of Arsenic Precipitation. Can. Metallurg. Q. 26 (2) 103−115.

  • 16. Dutrizac J.E. & Jambor J.L. (1987). Behaviour of Arsenic During Jarosite Precipitation: Arsenic Precipitation at 97 degree C from Sulphate or Chloride Media. Can. Metallurg. Q. 26 (2) 91−101.

  • 17. Filippou D. & Demopoulos G.P. (1997). Arsenic immobilization by controlled scorodite precipitation (Review). JOM 49 (1-2) 52−55.

  • 18. De Klerk R. J. Jia Y. Daenzer R. Gomez M.A. & Demopoulos G.P. (2012). Continuous circuit coprecipitation of arsenic(V) with ferric iron by lime neutralization: Process parameter effects on arsenic removal and precipitate quality. Hydrometallurgy 111-112 (1) 65−72.

  • 19. Ugarte F.J.G. & Monhemius A.J. (1992). Characterisation of high - temperature arsenic - containing residues from hydrometallurgical processes. Hydrometallurgy 30 (1-3) 69−86.

  • 20. Jia Y. Demopoulos G.P. Chen N. & Cutler J. (2005). Coprecipitation of As(V) with Fe(III) in sulfate media: Solubility and speciation of arsenic (Conference Paper). TMS Annual Meeting San Francisco United States 13-17 February 137-148 Code 65371.

  • 21. Azcue J.M. Mudroch A. Rosa & F. Hall G.E.M. (1994). Effects of abandoned gold mine tailings on the arsenic concentrations in water and sediments of Jake of Clubs Lakes B.C. Environ. Technol. 15 (7) 669-678. DOI: 10.1080/09593339409385472.

  • 22. Matera V. Le Hecho I. Laboudigue A. Thomas P. Tellier S. & Astruc M. 2003. A methodological approach for the identification of arsenic bearing phases in polluted soils. Environ. Pollut. 126 51-64.

  • 23. Sheppard S.C. (1992). Summary of phytotoxic levels of soil arsenic. Water Air Soil Pollut. (64) 539-550.

  • 24. Yoshida Y. & Langouche G. (2013). Mössbauer spectroscopy - Tutorial Book Spinger - Verlag Berlin Heidelberg.

  • 25. Bindi L. Moёlo Y. Lèone P. & Suchaud M. (2012). Stoichiomeric arsenopyrite FeAsS from La Roche - Balue Quarry Loire - Atlantique France: Crystal structure and Mössbauer study Can. Mineral: 50 (2) 471-479.

  • 26. Constantinescu Ş. Udubasa S.S. Popescu-Pogrion N. Mercioniu I. & Udubasa G.A. (2011). Complex investigations of the iron and gold inclusions in inerals species at nanosize scale. Rom. J. Phys. 56 (5-6) 708-718.

  • 27. Darby Dyar M. Agresti D.G. Schaefer M.W. Grant C.A. & Sklute E.C. (2006). Mössbauer Spectroscopy of Earth and Planetary Materials Annu. Rev. Earth Planet. (34) 83-125.

  • 28. Baláž P. & Lipka J. (2000). Mössbauer spectroscopy of sulphidic minerals. Acta Montan. Slov. Roč. 5 (2) 105-112.

  • 29. Kjekshus A. & Nicholsen D.G. (1971). The significance of Back - Bonding in compounds with pyrite marcasite and arsenopyrite Type structures. Acta Chem. Scandin. (25) 866-876.

  • 30. Imbert P. Gerard A. & Wintenberger M. (1963). Etude des sulfure arseniosulfure et arseniuret de fer naturels par effect Mosbauer Comp. Rend. (256) 4391-4393.

  • 31. Friedrich B. Krüger J. & Bernal G.M. (2002). Alternative solution purification in the hydrometallurgical zinc production. Sav. Inzen. Metalurg. Jugoslav. 85-101.

  • 32. http://www.kcm.bg

  • 33. Boyanov B.S. Kehayov Y.I. & Ivanov K.I. (2012). Monitoring of soil contamination in vicinity of lead-zinc smelter KCM SA Bulgaria Proceedings - 2012 International Conference on Biomedical Engineering and Biotechnology iCBEB 2012 art. No. 6245135 385-388.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 143 4
PDF Downloads 119 79 9