Thermal stability for the effective use of commercial catalase

Open access


Catalase with the commercial catalase name Terminox Ultra is widely used in the textile industry in bleaching processes. This enzyme is used to catalyse the decomposition of residual hydrogen peroxide into oxygen and water. In this study catalase was kept for about 30 hours in water baths in a temperature range from 35 to 70°C. For the first time, the kinetics of thermal deactivation of this enzyme was examined using an oxygen electrode. Stability of the enzyme depends strongly on temperature and its half-life times are 0.0014 h and 7.6 h, at 35 and 70°C, respectively.

1. Eren, H.A., Anis, P. & Davulcu, A. (2009). Enzymatic Onebath Desizing-Bleaching - Dyeing Process for Cotton Fabrics. Text. Res. J. 79, 1091-1098. DOI: 10.1177/0040517508099388.

2. Nielsen, P.H., Kuilderd, H., Zhou W. & Lu, X. (2009). Enzyme biotechnology for sustainable textiles. In Blackburn, R.S. (Eds), Sustainable textiles. Life cycle and environmental impact. (pp.113-138). Woodhead Publishing in Textiles No.98 http://

3. Costa, S.A., Tzanov, T., Carneiro, A.F., Gűbitz, G.M. & Cavaco-Paula, A. (2002). Recycling of textile bleaching effl uents for dyeing using immobilized catalase. Biotechnol. Lett. 24(3), 173-176. DOI: 10.1023/A:1014136703369.

4. Tarhan, L. (1995). Use of immobilized catalase to remove H2O2 used in the sterilization of milk. Proc. Biochem. 30(7), 623-628. DOI: 10.1016/0032-9592(94)00066-2.

5. Akertek, E. & Tarhan, L. (1995). Characterization of immobilized catalases and their application in pasteurization of milk with H2O2. Appl. Biochem. Biotechnol. 50(3), 291-303. DOI: 10.1007/BF02788099.

6. Fernández-Lafuente, R., Rodriguez, V. & Guisán, J.M. (1998). The coimmobilization of d-amino acid oxidase and catalase enables the quantitative transformation of d-amino acids (d-phenylalanine) into α-keto acids (phenylpyruvic acid). Enz. Microb. Technol. 23(1-2), 28-33. DOI: 10.1016/S0141-0229(98)00028-3.

7. Sumner, J.B. & Dounce, A.I. (1937). Crystalline catalase. J. Biol. Chem. 121, 417-427.

8. Yoshimoto, M., Sakamoto, H., Yoshimoto, N., Kuboi, R. & Nakao, K. (2007). Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enz. Microb. Technol. 41, 849-858. DOI:10.1016/j. enzmictec.2007.07.008.

9. Na, W., Wei, Q., Sun, H. & Nie, Z.R. (2013). Catalase immobilized on siliceous mesocellular foam with controlled window size. J. Porous Materials 20(1), 75-79. DOI: 10.1007/ s10934-012-9576-z.

10. Doğaç, Y.İ. & Teke, M. (2013). Immobilization of bovine catalase onto magnetic nanoparticles. Prep. Biochem. Biotechnol. 43(8), 750-765. DOI: 10.1080/10826068.2013.773340.

11. Switala, J. & Loewen, P.C. (2002). Diversity of properties among catalases. Arch. Biochem. Biophys. 401, 145-154. DOI: 10.1016/s0003-9861(02)00049-8.

12. Kaasgaard, S. (2008). European Patent No. 1,718,724 B1. European Patent Office.

13. Miłek. J. & Wójcik, M. (2011). Effect of temperature on the decomposition of hydrogen peroxide by catalase Terminox Ultra. Przem. Chem. 90(6), 1260-1263. (abstract in Polish).

14. Raducan, A., Cantemir, A.R., Puiu, M. & Oancea, D. (2012). Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess Biosyst. Eng. 35(9), 1523-1530. DOI: 10.1007/s00449-012-0742-0.

15. Hakala, M., Rantamaki, S., Puputti, E.M., Tyystjarvi, T. & Tyystjarvi, E. (2006). Photoinhibition of manganese enzymes: insights into the mechanism of photosystem II photoinhibition. J. Exp. Bot. 57(8), 1809-1816. DOI: 10.1093/jxb/erj189.

16. Díaz, A., Muñoz-Clares, R.A., Rangel, P., Valdés, V.J. & Hansberg, W. (2005). Functional and structural analysis of catalase oxidized by singlet oxygen. Biochimie 87, 205-214. DOI: 10.1016/j.biochi.2004.10.014.

17. Cantemira, A.R., Raducana, A., Puiub, M. & Oancea, D. (2013). Kinetics of thermal inactivation of catalase in the presence of additives. Proc. Biochem. 48, 471-477. DOI: 10.1016/j. procbio.2013.02.013.

18. Oancea, D., Stuparu, A., Nita, M., Puiu, M. & Raducan, A. (2008). Estimation of the overall kinetic parameters of enzyme inactivation using an isoconversional method. Biophys. Chem. 138, 50-54. DOI: 10.1016/j.bpc.2008.09.003.

19. Jürgen-Lohmann, D.L. & Legge, R.L. (2006). Immobilization of bovine catalase in sol - gels. Enz. Microb. Technol. 39, 626-633. DOI: 10.1016/j.enzmictec.2005.11.015.

20. Brauner, N. & Shacham, M. (1997). Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants. Chem. Eng. Proc. 36(3), 243-249. DOI: 10.1016/ S0255-2701(96)04186-4.

21. Rodionova, O.E. & Pomerantsev, A.L. (2005). Estimating the parameters of the Arrhenius equation. Kinet. Catal. 46(3), 305-308. DOI: 10.1007/s10975-005-0077-9.

22. Schwaab, M. & Pinto, J.C. (2007). Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant. Chem. Eng. Sci. 62(11), 2750-2764. DOI: 10.1016/j.ces.2008.03.010.

23. Sunberg, R. (1998). Statistical aspects on fitting the Arrhenius equation. Chemom. Intell. Lab. Sys. 41, 249-252. DOI: 10.1016/S0169-7439(98)00052-5.

24. Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431-441.

25. Schleeger, M., Heberle, J. & Kakorin, S. (2012). Simplifying the analysis of enzyme kinetics of cytochrome c oxidase by the Lambert-W function. Open J. Biophysics 2, 117-129. DOI: 10.4236/ojbiphy.2012.24015.

26. Freitas, F.F., Marquez, L.D.S., Ribeiro, G.P., Brandão, G.C., Cardoso, V.L. & Ribeiro, E.J. (2012). Optimization of the immobilization process of β-galatosidade by combined entrapment-cross-linking and the kinetics of lactose hydrolysis. Brazilian J. Chem. Eng. 29(01), 15-24. DOI: 10.1590/S0104-66322012000100002.

27. Sriyudthsak, K., Shiraishi, F. & Hirai, M.Y. (2013). Identification of a metabolic reaction network from time-series data of metabolite concentrations. PLOS ONE 8(1) e51212, 1-9. DOI: 10.1371/journal.pone.0051212.

28. Costa, S.A. & Reis, R.L. (2004). Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics. J. Mater. Sci.-Mater. Med. 15 (4), 335-342. DOI: 10.1023/B:JMSM.0000021098.75103.3a.

29. Gudelj, M., Fruhwirth, G.O., Paar, A., Lottspeich, F., Robra, K.H., Cavaco-Paulo, A. & Gübitz, G.M. (2001). A catalase- peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effl uents. Extremophiles 5, 423-429. DOI: 10.1007/s007920100218.

30. Lorentzen, M.S., Moe, E.H., Jouve, M. & Willassen, N.P. (2006). Cold adapted features of Vibrio salmonicida catalase: characterisation and comparison to the mesophilic counterpart from Prot. Mirab. Extrem. 10, 427-440. DOI: 10.1007/s00792-006-0518-z.

31. Vasić-Rački, D., Findrik, Z. & Presečki, A.V. (2011). Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl. Microbiol. Biotechnol. 91(4), 845-856. DOI: 10.1007/s00253-011-3414-0.

32. Findrik, Z. & Vasić-Rački, D. (2008). Mathematical modelling of amino acid resolution catalyzed by L-amino acid oxidases from Crotalus adamanteus and Crotalus atrox. Proc. Biochem. 43(11), 1186-1194. DOI: 10.1016/j.procbio.2008.06.010.

33. Grubecki, I. (2011). The optimal temperature control for the reactions with parallel deactivation of enzyme encapsulated inside microorganism cells. Comput. Methods Sci. Technol. 17(1-2), 25-34. 34.

34. Grubecki, I. & Wójcik, M. (2006). Analysis of temperature policies for batch reactors with concentration independent catalyst deactivation. J. Chem. Eng. Jap. 39(10), 1065-1068.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 49
PDF Downloads 25 25 13