Time requirements in closed and open batch distillation arrangements for separation of a binary mixture

Open access


Batch time requirements are provided for the separation of binary zeotropic mixtures in two different multivessel columns (with and without vapor bypass), a non-cyclic two-vessel column and a regular batch column based on dynamic simulations. The first three columns are operated as closed (total reflux) systems and the regular batch column is operated as an open (partial reflux) system. We analyze the effects of feed composition, relative volatility and product specification on the time requirements. The multivessel arrangements perform better than the regular batch column, which requires from 4.00 to 34.67% more time to complete a given separation. The elimination of the vapor bypass in the multivessel column is impractical though it has a positive effect on the batch time requirements. Thus, the multivessel column, with the vapor stream bypassing the intermediate vessel, is proposed as the best candidate for a binary zeotropic mixture with low concentration of light component, low relative volatility and high product purity demand. Furthermore, an experimental multivessel column with vapor bypass is built and the corresponding experiments verify the simulations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Sørensen E. & Skogestad S. (1996). Comparison of regular and inverted batch distillation Chem. Eng. Sci. 51(22) 4949-4962. DOI: 10.1016/0009-2509(96)00287-4.

  • 2. Klein A. & Repke J.U. (2009). Regular and inverted batch process structures for pressure swing distillation: a case study Asia-Pac. J. Chem. Eng. 4(6) 893-904. DOI: 10.1002/apj.344.

  • 3. Masoud A.Z. & Mujtaba I.M. (2009). Effect of operating decisions on the design and energy consumption of inverted batch distillation column Chem. Prod. Proc. Model. 4(1) Article 35. DOI: 10.2202/1934-2659.1275.

  • 4. Davidyan A.G. Kiva V.N. Meski G.A. & Morari M. (1994). Batch distillation in a column with a middle vessel Chem. Eng. Sci. 49(18) 3033-3051. DOI: 10.1016/0009-2509(94) E0083-3.

  • 5. Meski G.A. & Morari M. (1995). Design and operation of a batch distillation column with a middle vessel Comput. Chem. Eng. 19 597-602. DOI: 10.1016/0098-1354(95)87100-4.

  • 6. Barolo M. Guarise G.B. Rienzi S.A. Trotta A. & Macchietto S. (1996). Running batch distillation in a column with a middle vessel Ind. Eng. Chem. Res. 35(12) 4612-4618. DOI: 10.1021/ie960268s.

  • 7. Cui X.B. Yang Z.C. Shao H.Q. & Qu H.M. (2001). Batch distillation in a column with a cold middle vessel for heat-sensitive compounds Ind. Eng. Chem. Res. 40(3) 879-884. DOI: 10.1021/ie000491w.

  • 8. Warter M. Demicoli D. & Stichlmair J. (2004). Operation of a batch distillation column with a middle vessel: experimental results for the separation of zeotropic and azeotropic mixtures Chem. Eng. Process. 43(3) 263-272. DOI: 10.1016/ S0255-2701(03)00122-3.

  • 9. Gruetzmann S. Fieg G. & Kapala T. (2006). Theoretical analysis and operating behaviour of a middle vessel batch distillation with cyclic operation Chem. Eng. Process. 45(1) 46-54. DOI: 10.1016/j.cep.2005.05.005.

  • 10. Gruetzmann S. & Fieg G. (2008). Startup operation of middle-vessel batch distillation column: modeling and simulation Ind. Eng. Chem. Res. 47(3) 813-824. DOI: 10.1021/ ie070667v.

  • 11. Babu G. Aditya R. & Jana A.K. (2012). Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use Energy 45(1) 626-633. DOI: 10.1016/j.energy.2012.07.035.

  • 12. Edreder E.A. Mujtaba I.M. & Emtir M.M. (2012). Simulation of middle vessel batch reactive distillation column: application to hydrolysis of methyl lactate Chem. Eng. Trans. 29 595-600. DOI: 10.3303/CET1229100.

  • 13. Monroy-Loperena R. & Alvarez-Ramí rez J. (2012). Dual composition control in continuous middle-vessel distillation columns with a draw stream in the middle vessel Ind. Eng. Chem. Res. 51(12) 4624-4631. DOI: 10.1021/ie203018k.

  • 14. Mori H. Ito C. Oda A. & Aragaki T. (1999). Total refl ux simulation of packed column distillation J. Chem. Eng. Jpn. 32(1) 69-75. DOI: 10.1252/jcej.32.69.

  • 15. Hegely L. & Lang P. (2011). Comparison of closed and open operation modes of batch distillation Chem. Eng. Trans. 25 695-700. DOI: 10.3303/CET1125116.

  • 16. Skouras S. & Skogestad S. (2004). Time requirements for heteroazeotropic distillation in batch columns Comput. Chem. Eng. 28(9) 1689-1700. DOI: 10.1016/j.compchemeng. 2004.01.004.

  • 17. Skouras S. & Skogestad S. (2004). Time (energy) requirements in closed batch distillation arrangements Comput. Chem. Eng. 28(5) 829-837. DOI: 10.1016/j.compchemeng.2004.02.021.

  • 18. Bai P. Hua C. Li X. & Yu K.T. (2005). Cyclic total refl ux batch distillation with two refl ux drums Chem. Eng. Sci. 60(21) 5845-5851. DOI: 10.1016/j.ces.2005.05.040.

  • 19. Bai P. Song S. Sheng M. & Li X. (2010). A dynamic modeling for cyclic total refl ux batch distillation Chinese. J. Chem. Eng. 18(4) 554-561. DOI: 10.1016/S1004-9541(10)60258-3.

  • 20. Jiang Z. & Bai P. (2011). Overhead concentration platform of total withdrawal operation in cyclic total refl ux batch distillation Chinese. J. Chem. Eng. 19(4) 598-602. DOI: 10.1016/S1004-9541(11)60028-1.

  • 21. Bortolini P. & Guarise G.B. (1970). A new practice of batch distillation Quad. dell’Ing. Chim. Ital. 6(9) 150-157.

  • 22. Treybal R.E. (1970). A simple method for batch distillation Chem. Eng. 77 95-101.

  • 23. Wittgens B. Litto R. Sørensen E. & Skogestad S. (1996). Total refl ux operation of multivessel batch distillation Comput. Chem. Eng. 20 1041-1046. DOI: 10.1016/0098-1354(96)00181-0.

  • 24. Skogestad S. Wittgens B. Litto R. & Sørensen E. (1997). Multivessel batch distillation AIChE J. 43(4) 971-978. DOI: 10.1002/aic.690430412.

  • 25. Hasebe S. Noda M. & Hashimoto I. (1997). Optimal operation policy for multi-effect batch distillation system Comput. Chem. Eng. 21 1221-1226. DOI: 10.1016/S0098-1354(97)87669-7.

  • 26. Furlonge H. Pantelides C. & Sørensen E. (1999). Optimal operation of multivessel batch distillation columns AIChE J. 45(4) 781-801. DOI: 10.1002/aic.690450413.

  • 27. Hasebe S. Noda M. & Hashimoto I. (1999). Optimal operation policy for total refl ux and multi-effect batch distillation systems Comput. Chem. Eng. 23(4) 523-532. DOI: 10.1016/S0098-1354(98)00290-7.

  • 28. Wittgens B. & Skogestad S. (2000). Closed operation of multivessel batch distillation: Experimental verification AIChE J. 46(6) 1209-1217. DOI: 10.1002/aic.690460613.

  • 29. Kurooka T. Nishitani H. Hasebe S. & Hashimoto I. (2001). Energy conservation by multi-effect batch distillation system J. Chem. Eng. Jpn. 34(9) 1141-1146. DOI: 10.1252/ jcej.34.1141.

  • 30. Mahmud M.T. Mujtaba I.M. & Emtir M. (2008). Optimal design and operation of multivessel batch distillation column with fixed product demand and strict product specifications Comp. Aid. Chem. Engin. 25(1) 253-258. DOI: 10.1016/ S1570-7946(08)80047-8.

  • 31. Gruetzmann S. Fieg G. & Skogestad S. (2009). Experimental and theoretical studies on the start-up operation of a multivessel batch distillation column Ind. Eng. Chem. Res. 48(11) 5336-5343. DOI: 10.1021/ie800962b.

  • 32. Mujtaba I. (2004). Batch Distillation. Design and operation. London UK: Imperial College Press.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 367 136 10
PDF Downloads 125 80 6