Adsorption of anionic dyes onto natural, thermally and chemically modified smectite clays

Open access


The aim of this study was to determine the adsorption capacity of the smectite clays (from the overburden of the lignite deposit in Belchatow) for two anionic dyes, i.e. Reactive Blue 81 (RB-81) and Direct Blue 74 (DB-74). Additionally, the influence of the thermal and chemical (acid and alkali) clay modifications on the amount of bonded dyes was investigated. The adsorption capacity of the clay (natural and modified) was different for studied dyes and depended on the initial concentration and modification type. All the modified clays adsorbed the dyes at pH>pHPZC as the negatively charged surfaces of their particles (in accordance with the formula: AOH ↔ AO- + H+) prevented the formation of electrostatic bonds between the anionic dyes and the clay surface. The dyes were mainly bound with the hydrogen bonds forming between the donor groups in the dyes and the acceptor groups (-SiO and -Al2OH) in the clays. The coefficients in the adsorption isotherms were estimated with the linear and non-linear regression. The linear regression method was found that the Freundlich and Dubinin-Radushkevich isotherms described the dye sorption much better than the Langmuir model. On the other hand, all three models described well the experimental data in the non-linear regression method. Furthermore, the 1/n value (<1) obtained from the Freundlich equation for all the dye-sorbent systems indicated the favorable sorption.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Alkan M. Doğan M. Turhan Y. Demirbaş Ö. & Turan P. (2008). Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solution. Chem. Eng. J. 139 213-223. DOI:10.1016/j.cej.2007.07.080.

  • 2. Almeida C.A.P. Debacher N.A. Downs A.J. Cotte L.T & Mello C.A.D. (2009). Removal of methylene blue from colored effl uents by adsorption on montmorillonite clay. J. Colloid Interf. Sci. 332 46-53. DOI: 10.1016/j.jcis.2008.12.012.

  • 3. Doğan M. Alkan M. Demirbaş Ö. Özdemir Y. & Özmetin C. (2006). Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solution. Chem. Eng. J. 124 89-101. DOI: 10.1016/j.cej.2006.08.016.

  • 4. Majewska-Nowak K. (1986). Dye removal from industrial wastewater (in Polish). Ochr. Sr. 4 17-22.

  • 5. Crini G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technol. 97 1061-1085. DOI: 10.1016/j.biortech.2005.05.001.

  • 6. Gupta V.K. & Suhas. (2009) Application of low-cost for dye removal - A review. J. Environ. Manage. 90 2313-2342. DOI: 10.1016/j.jenvman.2008.11.017.

  • 7. Shen D. Fan J. Zhou W. Gao B. Yue Q. & Kang Q. (2009). Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J. Hazard. Mater. 172 99-107. DOI: 10.1016/j.jhazmat.2009.06.139.

  • 8. Choma J. Jarowiec M. & Burakiewicz-Mortka W. (1991). Adsorption of methylene blue from aqueous solutions on activated carbons ( in Polish). Ochr. Sr. 2 41-44.

  • 9. Ghadiri S.K. Nabizadeh R. Mahvi A.H. Nasseri S. Mesdaghinia A.R. & Talebi S.S. (2012). Potential of granulated modified nanozeolites Y for MTBE removal from aqueous solutions: Kinetic and isotherm studies. Pol. J. Chem. Tech. 14(2) 1-8. DOI: 10.2478/v10026-012-0063-8.

  • 10. Allen S.J. Mckay G. & Porter J.F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interf Sci 280 322-333. DOI: 10.1016/j.jcis.2004.08.078.

  • 11. Kyzioł-Komosińska J. Rosik-Dulewska C. Pająk M. & Jarzyna M. (2010). Removal of direct dyes from wastewater by sorption onto smectite clay. Arch. Environ. Prot. 3 3-14.

  • 12. Namasivayam C. Muniasamy N. Gayatri K. Rani M. & Ranganathan K. (1996). Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technol. 57 37-43. DOI: 10.1016/0960-8524(96)00044-2.

  • 13. Özcan A. Öncü E.M. & Özcan A.S. (2006). Kinetics isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Coll.Sur. A. 277 90-97. DOI: 10.1016/j.colsurfa.2005.11.017.

  • 14. Akl M. Youssef A.M. Al-Awadhi M.M. (2013). Adsorption of acid dyes onto bentonite and surfactant-modified bentonite. J. Anal. Bioanal. Tech. 4(4) 3-7. DOI:10.4172/2155-9872.1000174.

  • 15. Wang C.C. Juang L.C. Hsu T.C. Lee C.K. Lee J.F. & Huang F.C. (2004). Adsorption of basic dyes onto montmorillonite.J. Colloid. Interf. Sci. 273 80-86. DOI: 10.1016/j.jcis.2003.12.028.

  • 16. Iyim T.B. & Güçlü G. (2009). Removal of basic dyes from aqueous solutions using natural clay. Desalination 249 1377-1379. DOI: 10.1016/j.desal.2009.06.020.

  • 17. Turabik M. (2008). Adsorption of basic dyes from single and binary component systems onto bentonite: Simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method. J. Hazard. Mater. 158 52-64. DOI: 10.1016/j.jhazmat.2008.01.033.

  • 18. Özcan A. Ömeroğlu Ç. Erdoğan Y. & Özcan A.S. (2007). Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19. J. Hazard. Mater. 140 173-179. DOI: 10.1016/j.jhazmat.2006.06.138.

  • 19. Errais E. Duplay J. Elhabiri M. Khodja M. Ocampo R. Baltenweck-Guyot R. & Darragi F. (2012). Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism. Coll. Sur. A. 403 69-78. DOI: 10.1016/j. colsurfa.2012.03.057.

  • 20. Kyzioł-Komosińska J. Pająk M. & Walor K. (2009). The removal of dyes from textile wastewater using sorption method onto smectite clays (in Polish). In J. Ozonek & M. Dudzińska (Eds.). Polska Inżynieria Środowiska. Pięć lat po wstąpieniu do Unii Europejskiej (58 pp. 153-159). Monografie Komitetu Inżynierii Środowiska Polskiej Akademii Nauk.

  • 21. Stoch L. Bahranowski K. Budek L. & Fijał J. (1977). Bleaching properties of non-bentonitic clay materials and their modification. Mineralogia Polonica 8 31-49.

  • 22. Hisarli G. (2005). The effects of acid and alkali modification on the adsorption performance of fuller’s earth for basic dye. J. Colloid. Interf. Sci. 281 18-26. DOI: 10.1016/j. jcis.2004.08.089.

  • 23. Tamayo A. Kyziol-Komosinska J. Sánchez M.J. Callejas P. Rubio J. & Barba M.F. (2012). Characterization and properties of treated smectites. J. European Ceramic. Soc. 32 2831-2841. DOI: 10.1016/j.jeurceramsoc.2011.12.029.

  • 24. Kyzioł-Komosińska J. & Pająk M. (2012): Sorptive removal of dyes from water and wastewater using neogene smectite clays (in Polish). Work & Studies No 83 Zabrze: Institute of Environmental Engineering of the Polish Academy of Sciences.

  • 25. Freundlich H.M.F. (1906). Over the adsorption in solution. Z. Phys. Chem. 57A 385-470.

  • 26. Langmuir I. (1916). The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38 2221-2295. DOI: 10.1021/ja02254a006.

  • 27. Dubinin M.M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically non- uniform surface. Chem. Rev. 60 235-266. DOI: 10.1021/cr60204a006.

  • 28. Foo K.Y. & Hameed B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156 2-10. DOI: 10.1016/j.cej.2009.09.013.

  • 29. Brdar M. Sciban M. Takaci A. & Dosenovic T. (2012). Comparison of two and three parameters adsorption isotherm for Cr(VI) onto Kraft lignin. Chem. Eng. J. 183 108-111. DOI: 10.1016/j.cej.2011.12.036.

  • 30. Ruiz R. Blanco C. Pesquera C. Gonzalez F. Benito I. & Lopez J.L. (1997). Zeolitization of a bentonite and its application to the removal of ammonium ion from waste water. App. Clay Sci. 12 73-83.

  • 31. Ozcan A.S. & Ozcan A. (2004). Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J. Colloid Interf. Sci. 276 39-46. DOI: 10.1016/j.jcis.2004.03.043.

  • 32. Qiao S. Hu Q. Haghseresht F. Hu X. & Lu G.Q. (2009). An investigation on the adsorption of acid dyes on bentonite based composite adsorbent. Sep. Purif. Technol. 67 218-225. DOI: 10.1016/j.seppur.2009.03.012.

  • 33. Dye structure and functional groups of Direct Blue 74. Retrieved January 22 2014 from!mol=c1%28S%28%3DO%29%28%3DO-%29%5BO-%5D%29c%28%2FN%3DN%2Fc2c3c%28cc%28S%28%3DO%29%28%3DO%29%5BO-%5D%29cc3%29c%28%2FN%3DN%2Fc3c4c%28cc%28S%28%3DO-%29%28%3DO%29%5BO%5D%29cc4%29c%28%2FN%3DN%2Fc4cc%28S%28%3DO%29%28%3DO%29%5BO-%5D%29ccc4%29cc3%29cc2%29c%28c2c%28c1%29cc%28cc2%29N%29O.%5BNa%2B%5D.%5BNa%2B%5D.%5BNa-%2B%5D.%5BNa%2B%5D&source=fp

  • 34. Dye structure and functional groups of Reactive Blue 81. Retrieved January 22 2014 from!mol=Clc5nc%28Nc3cc%28cc4cc%28c%28%2FN%3DN%2Fc2ccc%28Nc1ccccc1%29c%28c2%29S%28%3DO-%29%28%3DO%29O%5BNa%5D%29c%28O%29c34%29S%28%3DO%29%28%3DO%29O%5BNa%5D%29S%28%3DO-%29%28%3DO%29O%5BNa%5D%29nc%28Cl%29n5&source=calculate

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 415 205 2
PDF Downloads 143 99 5