Processes and Technologies for the Recycling of Spent Fluorescent Lamps

Open access


The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs) such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Durao W. Castro C. & Windmöller C. (2008). Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps. Waste Management 28 2311-2319. DOI: 10.1016/j.wasman.2007.10.011.

  • 2. Chang T. You S. Yu B. & Kong H. (2007). The fate and management of high mercury-containing lamps from high technology industry. J. Hazard. Mater. 141 784-792. DOI: 10.1016/j.hazmat.2006.07.045.

  • 3. Tunsu C. Retegan T. & Ekberg Ch. Sustainable processes development for recycling of fluorescent phosphorous powders - rare earth and mercury separation Literature report Chalmers University and Technology Gothenburg Sweden 2012 (24.01.2013).

  • 4. Rey-Raap N. & Gallardo A. (2012). Determination of mercury distribution inside spent compact fl uorescent lamps by atomic absorption spectrometry. Waste Management 32 944-948. DOI: 10.1016/j.wasman.2011.12.001.

  • 5. Raposo C. Windmölle C. & Junior W. (2003). Mercury speciation in fluorescent lamps by thermal release analysis. Waste Management 23 879-886. DOI: 10.1016/SO956- -053X(03)00089-8.

  • 6. Rabah M.A. (2004). Recovery of aluminum nickel-copper alloys and salts from spent fluorescent lamps. Waste Management 24 119-126. DOI:10.1016/j.wasman.2003.07.001.

  • 7. Rabah M.A. (2008). Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps. Waste Management 28 318-325. DOI: 10.1016/j.wasman. 2007.02.006.

  • 8. Hirajima T. Sasaki K. Bissombolo A. Hirai H. Hamada M. Tsunekawa M. (2005). Feasibility of an efficient recovery of rare earth-activated phosphors from waste fl uorescent lamps through dense-medium centrifugation. Sep. Purif. Technol. 44 197-204. DOI:10.1016/j.seppur.2004.12.014.

  • 9. Hirajima T. Bissombolo A. Sasaki K. Nakayama K. Hirai H. & Tsunekawa M. (2005). Feasibility of a of rare earth phosphors from waste fluorescent lamps. Int. J. Miner. Process. 77 187-198. DOI:10.1016/j.minpro.2005.05.002.

  • 10. Michelis I. Ferella F. Varelli E.F. & Veglio F. (2011). Treatment of exhaust fl uorescent lamps to recover yttrium: Experimental and process analyses Waste Management 31 2559-2568. DOI:10.1016/j.wasman.2011.07.004.

  • 11. Ronda C.R. Jüstel T. & Nikol H. (1998). Rare earth phosphors: fundamentals and applications. J. Alloys Comp.275-277 669-676. PII: S0925-8388(98)00416-2.

  • 12. Rare Earth Elements - EPA/600/R-12/572 Report. 2012. [cited on 2014 Jan 9]. Available from

  • 13. Chang T.Ch. Wang S.F. You S.J. & Cheng A. (2007). Characterization of halophsosphate phosphor powders recovered from the spent fluorescent lamps. J. Environ. Eng. Manage. 17(6) 435-439.

  • 14. Jiang Y. Shibayama A. Liu K. & Fujita T. (2005). A hydrometallurgical process for extraction of lanthanum yttrium and gadolinium from spent optical glass. Hydrometallurgy 76 1-9. DOI: 10.1016/j.hydromet.2004.06.010.

  • 15. Sayilgan E. Kukrer T. Civelekoglu G. Ferella F. Akcil A. Veglio F. & Kitis M. (2009). A review of technologies for the recovery of metals from spent alkaline and zinc carbon batteries. Hydrometallurgy 97 158-166. DOI:10.1016/j. hydromet.2009.02.008.

  • 16. Otto R. & Wojtalewicz-Kasprzak A. (2012). Patent No. 20120027651. Chemistry of inorganic compounds treating mixture to obtain metal containing compound rare earth metal.

  • 17. Shimizu R. Sawada K. Enokida Y. & Yamamoto I. (2005). Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps. J. Supercrit. Fluids 33 235-241. DOI:10.1016/j.supfl u.2004.08.004.

  • 18. Naitou M. Yoshikawa M. & Narita K. (1987). U.S. Patent No. 4650652. Process for recovering highly pure rare earth oxides from a waste rare earth phosphor.

  • 19. Bou-Maroun E. Chebib H. Leroy M.J.F. & Boos A. (2006). Solvent extraction of lanthanum(III) europium(III) and lutetium(III) by bis(4-acyl-5-hydroxypyrazoles) derivatives. Sep. Purif. Technol. 50 220-228. DOI: 10.1016/j.seppur.2005.11.029.

  • 20. Sun X. Wang J. Li D. & Li H. (2006). Synergistic extraction of rare earths by mixture of bis(244-trimethylpentyl) phosphinic acid and Sec-nonylphenoxy acetic acid. Sep. Purif. Technol. 50 30-34. DOI: 10.1016/j.seppur.2005.11.004.

  • 21. Morais C.A. & Ciminelli V.S.T. (2004). Process development for the recovery of high-grade lanthanum by solvent extraction. Hydrometallurgy 73 237-244. DOI: 10.1016/j. hydromet.2003.10.008.

  • 22. Singh D.K. Singh H. & Mathur J.N. (2006). Extraction of rare earths and yttrium with high molecular weight carboxylic acids. Hydrometallurgy 81 184-181. DOI:10.1016/j. hydromet.2005.12.002.

  • 23. Wu D. Zhang Q. & Bao B. (2007). Solvent extraction of Pr and Nd from chloride-acetate medium by 8-hydroquinoline with and without 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester as an added synergist in heptane diluent. Hydrometallurgy 88 210-215. DOI: 10.1016/j.hydromet.2007.05.009.

  • 24. Lu Y. Bi Y. Bai Y. & Liao W. (2013). Extraction and separation of thorium and rare earths from nitrate medium with p-phosphorylated calixarene. J. Chem. Technol. Biotechnol. (15.03.2013) DOI :10.1002/ jctb.4035/pdf.

  • 25. Banda R. Jeon H. Lee M. (2012). Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants. Sep. Purif. Technol. 98 481-489. DOI:10.1016/j.seppur.2012.08.015.

  • 26. El-Nadi Y.A. (2012). Lanthanum and neodymium from Egyptian monazite: Synergistic extractive separation using organophosphors reagents. Hydrometallurgy 119-120 23-29. DOI: 10.1016/j.hydromet.2012.03.003.

  • 27. Belova V. Voshkin A. Egorova N. & Kholkin A. (2012). Solvent extraction of rare earth metals from nitrate solutions with di(244-trimethylpentyl)phosphinate of methyltrioctylammonium. J. Molec. Liquids 172 144-148. DOI: 10.1016/j.molliq.2012.04.012.

  • 28. El-Hefny N.E. El-Nadi Y.A. & Ahmed I.M. (2011). 18-Crown-6 for the selective extraction and separation of cerium(IV) from nitrate medium containing some lanthanides. Inter. J. Miner. Proces. 101 58-62. DOI: 10.1016/j. minpro.2011.07.013.

  • 29. Eskandari Nasab M.E. Sam A. & Milani S.A. (2011). Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy 106 141-147. DOI:10.1016/j.hydromet.2010.12.014

  • 30. Radhika S. Nagaphani Kumar B. Lakshmi Kantam M. & Ramachandra Reddy B. (2010). Liquid-liquid extraction and separation possibilities of heavy and Ligot rare-earths from phosphoric acid solutions with acidic organophosphors reagents. Sep. Purif. Technol. 75 295-302. DOI: 10.1016/j. seppur.2010.08.018.

  • 31. Tong S. Song N. Jia Q. Zhou W. & Liao W. (2009). Solvent extraction of rare earths from chloride medium with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 and secoctylphenoxyacetic acid. Sep. Purif. Technol. 69 97-101. DOI: 10.1016/j.seppur.2009.07.003.

  • 32. Belova V.V. Voshkin A.A. Kholkin A.I. & Payrtman A.K. (2009). Solvent extraction of some lanthanides from chloride and nitrate solutions by binary extractants Hydrometallurgy 97 198-203. DOI:10.1016/j.hydromet.2009.03.004.

  • 33. El-Sofany E.A. (2008). Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4. J. Hazard. Mater. 153 948-954. DOI:10.1016/j.jhazmat.2007.09.046.

  • 34. Kamio E. Fujiwara Y. Matsumoto M. Valenzuela F. & Kondo K. (2008). Investigation on extraction rate of lanthanides with extractant-impregnated microcapsule. Chem. Engine. J. 139 93-105. DOI: 10.1016/j.cej.2007.07.072.

  • 35. Kao H.Ch. Yuang P. & Juang R. (2006). Solvent extraction of La(III) and Nd(III) from nitrate solutions with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester. Chem. Engine. J. 119 167-174. DOI: 10.1016/j.cej.2006.03.024.

  • 36. Zamani A.A. & Yaftian M.R. (2004). Solvent extraction of thorium lanthanum and europium ions by bis(2-ethylhexyl) phosphoric acid using 2-nitrobenzo-18-crown-6 as ion size selective masking agent. Sep. Purif. Technol. 40 115-121. DOI: 10.1016/j.seppur.2004.01.012.

  • 37. Jia Q Liao W. Li D. & Niu Ch. (2003). Synergistic extraction of lanthanum(III) from chloride medium bymixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 and triisobutylphosphine sulphide. Analyt. Chimi. Acta 477 251-256. PII: S0003-2670(02)01430-7.

  • 38. Innocezi V. De Michaelis I. Ferella F. & Veglio F. (2013). Recovery of yttrium from cathode ray tubes and lamps’ fl uorescent powders: experimental results and economic simulation. Waste Manag. 33(11) 2390-2396. DOI: 10.1016/j. wasman.2013.06.002.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 414 119 0
PDF Downloads 296 149 23