Separation and Concentration of Succinic Adic from Multicomponent Aqueous Solutions by Nanofiltration Technique

Open access

Abstract

This paper applies the determined suitability of nanofiltration (NF) membrane separation for selective isolation and concentration of succinic acid from aqueous solutions which are post-fermentation multicomponent fluids. The study analyzed the influence of concentration and the pH of the separated solutions on the efficiency and selectivity of NF process that runs in a module equipped with a ceramic membrane. Moreover, the effect of applied trans-membrane pressure on the retention of succinic acid and sodium succinate has been studied. The investigations have shown that in the used NF module the retention of succinic acid salt is equal almost 50% in the case of a three-component model solution, although the degree of retention depends on both the transmembrane pressure and the initial concentration of separated salt.

1. Chmielewski, Ł. & Rodkiewicz, W. (2008, December). International Biofuels Market Status and Prospects, Foundation Programmes for Agriculture (FAPA|), Warsaw 2008 (pp. 1032).

2. Baran, E. (2011, April). The global market for glycerin, Retrieved March 20, 2013, from http://www.chemiaibiznes.com.pl/artykuly/pokaz/64.html

3. Melcer, A., Klugmann-Radziemska, E. & Ciunel, K. (2011). Development of glycerin phase from the production of biofuels, Archives of Waste Management and Environmental Protection 13(1), 1-20 from.http://ago.helion.pl

4. Zhou, Z., Du, G., Hua, Z., Zhou, J. & Chen, J. (2011). Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresource Technol. 102(20), 9345–9349. DOI: 10.1016/j.biortech.2011.07.120.

5. Erickson, B., Nelson, J.E. & Winters, P. (2012). Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol. J. 7(2), 176–185, DOI: 10.1002/biot.201100069.

6. Deng Y., Lee S., Xu Q., Gao M. & Huang H. (2012). Production of fumaric acid by simultaneous saccharification and fermentation of starchy materials with 2-deoxyglucose-resistant mutant strains of Rhizopus oryzae. Bioresource Technol. 107, 363–367. DOI: 10.1016/j.biortech.2011.11.117.

7. Choi, J.-H., Fukushi, K. & Yamamoto, K. (2008). A study on the removal of organic acids from wastewaters using nanofiltration membranes. Sep. Purif. Technol. 59(1), 17–25. DOI: 10.1016/j.seppur.2007.05.021.

8. He, Y., Chena, G., Ji, Z. & Li, S. (2009). Combined UF– NF membrane system for filtering erythromycin fermentation broth and concentrating the filtrate to improve the downstream efficiency. Sep. Purif. Technol. 66(2), 390–396. DOI: 10.1016/j. seppur.2008.12.007.

9. Umpucha, C., Galier, S., Kanchanatawee, S. & Roux-de Balmann, H. (2010). Nanofiltration as a purification step in production process of organic acids: Selectivity improvement by addition of an inorganic salt. Process Biochem. 45(11), 1763–1768. DOI: 10.1016/j.procbio.2010.01.015.

10. Schonherr, J. & Bukovac, M.J. (1972). Dissociation constants of succinic acid 2,2-dimethylhydrazide. J. Agric. Food Chem. 20(6), 1263–1265. DOI: 10.1021/jf60184a023.

11. Kang, S.H. & Chang, Y.K. (2005). Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. J. Membr. Sci. 246(1), 49–57. DOI: 10.1016/j. memsci.2004.08.014.

12. Mullet, M., Fievet, P., Reggiani, J.C. & Pagetti, J. (1997). Surface electrochemical properties of mixed oxide ceramic membranes: Zeta-potential and surface charge density. J. Membr. Sci. 123(2), 255–265. DOI: 10.1016/S0376-7388(96)00220-7.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 285 255 11
PDF Downloads 85 77 11