Selective recovery of cobalt(II) towards lithium(I) from chloride media by transport across polymer inclusion membrane with triisooctylamine

Open access


In this work the selective transport of cobalt(II) and lithium(I) ions from aqueous chloride solutions through polymer inclusion membranes (PIMs) is presented. Triisooctylamine (TIOA) has been applied as the ion carrier in membrane. The effects of various parameters on the transport of Co(II) and Li(I) were studied. The obtained results show that Co(II) ions were effectively removed from source phase through PIM containing 32 wt.% TIOA, 22 wt.% CTA (cellulose triacetate) and 46 wt.% ONPOE (o-nitrophenyl octyl ether) or ONPPE (o-nitrophenyl pentyl ether) into deionized water as the receiving phase. The results indicate that there is a possibility of polymer inclusion membranes application to recover Co(II) and Li(I) from aqueous chloride solutions

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bielanski A. (2010). Inorganic Chemistry PWN Poland.

  • 2. Chagnes A. & Pospiech B. (2013). A brief review on hydrometallurgical technologies for recycling spent lithium- -ion batteries J. Chem. Technol. Biotechnol. 88 (7) 1191-1199. DOI: 10.1002/jctb.4053.

  • 3. Pospiech B. (2012). Selective extraction of cobalt(II) and lithium(I) using phosphorous acids from leach liquor of spent lithium-ion batteries. Rudy i Metale Nieżelazne 6 368-373.

  • 4. Chen L. Tang X. Zhang Y. Li L. Zeng Z. & Zhang Y. (2011). Process for the recovery of cobalt oxalate from lithium ion batteries. Hydrometallurgy 108 80-86. DOI: 10.1016/j. hydromet.2011.04.013.

  • 5. Väyrynen A. & Salminen J. (2012). Lithium ion battery production. J. Chem. Thermodynamics 46 80-85. DOI: 10.1016/j. jct.2011.09.005.

  • 6. Lee J.Ch. & Pandey B.D. (2012). Bio-processing of solid wastes and secondary resources for metal extraction - A review. Waste Management 32 3018. DOI: 10.1016/j. wasman.2011.08.010.

  • 7. Shin S.M. Kim N.H. Sohn J.S. Yang D.H. & Kim Y.H. (2005). Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79 172-181. DOI: 10.1016/j. hydromet.2005.06.004.

  • 8. Li L. Ge J. Wu F. Chen R. Chen S. & Wu B. (2010). Recovery of cobalt and lithium from spent lithium-ion batteries using organic citric acid as leachant. J. Hazard. Mater. 176 288-293. DOI: 10.1016/j.hazmat.2009.11.026.

  • 9. Zhao J.M. Shen X.Y. Deng F.L. Wang F.C. Wu Y. & Liu H.Z. (2011). Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex 272. Sep. Purif. Technol. 78 345-351. DOI: 10.1016/j.seppur.2010.12.024.

  • 10. Sun L. & Qiu K. (2011). Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium ion batteries. J. Hazard. Mater. 194 378-384. DOI: 10.1016/j.jhazmat.2011.07.114.

  • 11. Swain B. Jeong J. Lee J. Lee G.H. & Sohn J. (2007). Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J. Power Sources 167 536-544. DOI: 10.1016/j.powsour.2007.02.046.

  • 12. Suzuki T. Nakamura T. Inoue Y. Niinae M. & Shibata J. (2012). A hydrometallurgical process for the separation of aluminum cobalt copper and lithium in acidic sulfate media. Sep. Purif. Technol. 98 396-401. DOI: org/10.1016/j. seppur.2012.06.034.

  • 13. Swain B. Jeong J. Lee J. & Lee G. (2007). Extraction of Co(II) by supported liquid membrane and solvent extraction using Cyanex 272 as an extractant: A comparison study. J. Membr. Sci. 288 139-148. DOI: 10.1016/j.memsci.2006.11.012.

  • 14. Swain B. Jeong J. Yoo K. & Lee J. (2010). Synergistic separation of Co(II)/Li(I) for the recycling of LIB industry wastes by supported liquid membrane using Cyanex 272 and DP-8R. Hydrometallurgy 101 20-27. DOI: 10.1016/j.hydromet. 2009.11.012.

  • 15. Alguacil F.J. Alonso M. Lopez F.A. Lopez-Delgado A. (2011). Active transport of cobalt(II) through a supported liquid membrane using the mixture DP8R and Acorga M5640 as extractant. Desalination 281 221-225. DOI: 10.1016/j.desal. 2011.07.064.

  • 16. Sürücü A. Eyüpoglu V. Tutkun O. (2010). Selective separation of cobalt and nickel by supported liquid membranes. Desalination 250 1155-1156. DOI: 10.1016/j.desal.2009.09.131.

  • 17. Kozłowski C.A. Kozlowska J. Pellowski W. & Walkowiak W. (2006). Separation of cobalt-60 strontium-90 and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorous acids. Desalination 198 141-148. DOI: 10.1016/j.desal.2006.02.005.

  • 18. Kagaya S. Cattrall R.W. & Kolev S.D. (2011). Solid- -phase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier. Anal. Sci. 27 653-7.

  • 19. Blitz-Raith A.H. Paimin R. Cattral R.W. & Kolev S.D. (2007). Separation of Co(II) from Ni(II) by solid phase extrac- tion into Aliquat 336 chloride immobilized in poly(vinyl chloride) Talanta 71 419-423. DOI: 10.1016/j.talanta.2006.04.017.

  • 20. Pospiech B. (2012). Separation of silver(I) and copper(II) from aqueous solutions by transport through polymer inclusion membranes with Cyanex 471X. Sep. Sci. Technol. 47 1413-1419. DOI: org/10.1080/01496395.2012.672521.

  • 21. Pospiech B. & Walkowiak W. (2007). Separation of copper(II) cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes. Sep. Purif. Technol. 57 461-465.DOI: 10.1016/j.tseppur.2006.07.005.

  • 22. Danesi R. (1984). Separation of metal species by supported liquid membranes. Sep. Sci. Technol. 19 857-894.

  • 23. Logeat M. Mankowski G. Molinier J. & Lenzi M. (1982). Complete separation of copper and cobalt by solvent extraction with triisooctylamine Hydrometallurgy 9 105-113.

  • 24. Pospiech B. (2013). Hydrometallurgical recovery of cobalt(II) from acidic chloride solutions by transport through polymer inclusion membranes Phys. Problems of Miner. Process. 49(2) 641-649.

  • 25. Walkowiak W. Bartsch R.A. Kozlowski C. Gega J. Charewicz W.A. & Amiri-Eliasi B. (2000). Separation and removal of metal ionic species by polymer inclusion membranes. J. Radioanal. Nucl. Chem. 246 (32) 643-650.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 108 0
PDF Downloads 228 136 7