Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water

Open access


Studies on the currently used organophosphorus insecticides with respect to their environmental levels and effective remediation technologies for their residues in water have been considered as a source of major concern. This study was carried out to monitor the presence of organophosphorus in drinking water plants (Kafr-El-Shiekh, Ebshan, Elhamoul, Mehalt Aboali, Fowa, Balteem and Metobess) in Kafr-El-Shiekh Governorate, Egypt. Furthermore, it was carried out to evaluate the efficiency of different remediation technologies (advanced oxidation processes and bioremediation) for removing chlorpyrifos in drinking water. The results showed the presence of several organophosphorus pesticides in water sampling sites. Chlorpyrifos was detected with high frequency relative to other compounds in drinking water. Nano photo-Fenton like reagent (Fe2O3(nano)/H2O2/UV) was the most effective treatment for chlorpyrifos removal in drinking water followed by ZnO(nano)/H2O2/UV, Fe3+/H2O2/UV and ZnO/H2O2/ UV, respectively. Bioremediation of chlorpyrifos by effective microorganisms (EMs) removed 100% of the chlorpyrifos initial concentration after 23 days of treatment. There is no remaining toxicity in chlorpyrifos contaminated-water after remediation on treated rats with respect to cholinesterase activity and histological changes in kidney and liver relative to control. Advanced oxidation processes especially with nanomaterials and bioremediation with effective microorganisms can be regarded as safe and effective remediation technologies for chlorpyrifos in drinking water.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Tankiewicz M. Fenik J. & Biziuk M. (2010). Determination of organophosphorus and organonitrogen pesticides in water samples ends in. Anal. Chem. 29 1050-1063. DOI: 10.1016/j.trac.2010.05.008.

  • 2. Sosnowska K. Styszko-Grochowiak K. & Gołas J. (2009). Emerging contaminants in aquatic environment-sources risk and analytical problems Anal. 4 44-48.

  • 3. McKinlay R. Plant J.A. Bell J.N.B. & Voulvoulis N. (2008). Endocrine disrupting pesticides: Implications for risk assessment Environ. Inter. 34 2 168-183. DOI: 10.1016/j. envint.2007.07.013.

  • 4. Lasram M.M. Annabi A.B. El-Elj N. Selmi S. Kamoun A. El-Fazaa S. & Gharbi N. (2009). Metabolic disorders of acute exposure to malathion in adult wistar rats. J. Hazard. Mat. 163 1052-1055. DOI:10.1016/j.jhazmat.2008.07.059.

  • 5. Derbalah A.S. (2009). Chemical remediation of carbofuran insecticide in aquatic system by advanced oxidation processes. J. Agric. Res. Kafr Elsheikh Univ. 35 (1) 308-327.

  • 6. Shawaqfeh A.T. & Al Momani F.A. (2010). Photocatalytic treatment of water soluble pesticide by advanced oxidation technologies using UV light and solar energy. Solar Energy 84 1157-1165.

  • 7. Francisca M.C. Vilar V.J.P. Ferreira Ana F.C.C. Felipe D.R.A. & Márcia D. Sousa M.A. Goncalves C. Boaventura Rui A.R. & Alpendurada M.F. (2012). Treatment of a pesticide-containing wastewater using combined biological and solar-driven AOPs at pilot scale Chem. Eng. J. 209 429-441. DOI: 0.1016/j.cej.2012.08.009.

  • 8. Derbalah A.S. Nakatani N. & Sakugawa H. (2004). Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere 57 635-644. DOI: 10.1016/j.

  • 9. Lines M.G. (2008). Nanomaterials for practical functional uses. J. Alloys Compd 449 242-245. DOI: 10.1016/j.

  • 10. Mamalis A.G. (2007). Recent advances in nanotechnology. J. Mat. Process. Technol. 181 52-58.

  • 11. Miyazaki K. & Islam N. (2007). Nanotechnology systems of innovation - an analysis of industry and academia research activities. Technovation 27 661-675. DOI: 10.1016/j. technovation.2007.05.009.

  • 12. Cuenya B.R. (2010). Synthesis and catalytic properties of metal nanoparticles: Size shape support composition and oxidation state effects. Thin Solid Films. 518 3127-3150. DOI: 10.1016/j.tsf.2010.01.018.

  • 13. Theng B.K.G. & Yuan G. (2008). Nanopaticles in the soil environment. Elements 4 395-399.

  • 14. Feng J. Hu X. & Yue P.L. (2004 a). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environ. Sci. Technol. 38 269-275.

  • 15. Feng J. Hu X. & Yue P.L. (2004 b). Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: a comparative study. Environ. Sci. Technol. 38 5773-5778.

  • 16. Valdés-Solís T.P. Valle-Vigón P. Álvarez S. Marbán G. & Fuertes A.B. (2007 a). Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. J. Catal. 251 239-243. DOI: 10.1016/j.jcat.2007.07.006.

  • 17. Valdés-Solís T.P. Valle-Vigón P. Álvarez S. Marbán G. & Fuertes A.B. (2007 b). Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catal. Commun. 8 2037-2042. DOI: 10.1016/j. catcom.2007.03.030.

  • 18. Zelmanov G. Semiat R. (2008). Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Wat. Res. 42 492-498. DOI: 10.1016/j.watres.2007.07.045.

  • 19. Nurmi J. Tratnyek P.G. Sarathy V. Baer D.R. Amonette J.E. Pecher K. Wang C. Linehan J.C. Matson D.W. Penn R.L. & Driessen M.D. (2005). Characterization and properties of metallic iron nanoparticle: spectroscopy electrochemistry and kinetics. Environ. Sci. Technol. 39 1221-1230. DOI: 10.1021/es049190u.

  • 20. Megharaj M. Ramakrishnan B. Venkateswarlu K. Sethunathan N. & Naidu R. (2011). Bioremediation approaches for organic pollutants: A critical perspectiveReview Environ. Inter. 37 1362-1375.

  • 21. Vidali M. (2001). Bioremediation. An overview. PureAppl. Chem. 73 (7): 1163-1172 . DOI: 10.1351/pac200173071163.

  • 22. Kralj M.B. Franko M. & Trebse P. (2007). Photodegradation of organophosphorus insecticides-Investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal spectrometric bioassay. Chemosphere 67 99-107. DOI: 10.1016/j.chemosphere.2006.09.039.

  • 23. Simonian A.L. Efremenko E.N. & Wild J.R. (2001). Discriminative detection of neurotoxins in multi-component samples. Anal. Chim. Acta 444 179-186.

  • 24. Abdel-Halim K.Y. Salama A.K. El-Khateeb E.N. & Bakry N.M. (2006). Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate Egypt: Implications for monitoring and biomarker responses. Chemosphere 63 1491-1498. DOI: 10.1016/j.chemosphere.2005.09.019.

  • 25. Abdel-Megeed A. (2004). Psychrophilic degradation oflong chain alkanes Unpublished doctoral dissertation Technical University Hamburg-Harburg Germany. pp. 158.

  • 26. Derbalah A.S. Massoud A.H. & Belal E.B. (2008). Biodegrability of famoxadone by various microbial isolates in aquatic system. Land Contamination & Reclama. 16 (1) 13-23. DOI: 10.2462/09670513.876.

  • 27. Ellman G.L. Courtney K.D. Andres V. & Featherstone R.M. (1961). A new and rapid calorimetric determination of acetyl cholinesterase activity. Biochem. Pharmacol. 7 88-95.

  • 28. Bancroft J.D. & Stevens A. (1996). Theory and Practiceof Histological Techniques. (4th ed.). Churchill Livingstone. Edinburg London Melbourne and New York.

  • 29. Abd-Allah S.W. & Hesham M.G. (2003). Monitoring of pesticide residues in different sources of drinking water in some rural areas. Alex. J. Agric. Res. 48 (3) 187-199.

  • 30. Ashry M.A. Bayoumi O.C. El-Fakharany I.I. Derbalah A.S. & Ismail A.A. (2006). Monitoring and removal of pesticides residues in drinking water collected from Kafr El-Sheikh governorate Egypt. J. Agric. Res. Tanta Univ. 32 (3) 691-704.

  • 31.Aizawa M.Y.T. Matumoto N. & Ouna F. (1994). Degradation of Pesticides by Chlorination During Water Purification. Groundwater Contamination Environmental Restoration and Diffuse Source Pollution. Water Sci. Tech. 30 119-128.

  • 32. Aslan S. (2005). Combined removal of pesticides and nitrates in drinking waters using biodenitrification and sand filter system Process. Biochem. 40 417-424. DOI: 10.1016/j. procbio.2004.01.030.

  • 33. Ayranci E. & Hoda N. (2005). Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere. 60 1600-1607. DOI: 10.1016/j.chemosphere.2005.02.040 .

  • 34. Matilainen A. Vepsäläinen M. & Sillanpää M. (2010). Natural organic matter removal by coagulation during drinking water treatment. A Rev. Advances in Colloid and Interface Sci. 159189-197. DOI: org/10.1016/j.cis.2010.06.007.

  • 35. Sarkar B.N. Venkateswralu R. Nageswara B. Hattacharjeec C. & Kalea V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach. Desalination 212 129-140. DOI: 10.1016/j.desal.2006.09.021.

  • 36. He F. Zhao D. Liu J. & Roberts C.B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Indian Engineer. Chem. Res. 46 29-34. DOI: 10.1021/ie0610896.

  • 37. He F. & Zhao D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 393314-3320. DOI:10.1021/es048743y.

  • 38. Hayashi H. Nakajima Y. & Ohta K. (2007). Novel degradation method of organic compounds in human surroundings using iron oxide. Rep. Technol. Res. Institute Osaka Pref. 21 79-83. DOI: 10.1016/j.chemosphere.2010.11.052.

  • 39. Takuya M. Tokumura M. Sekine M. & Kawase Y. (2011). Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere 82 1422-1430. DOI: 10.1016/j.chemosphere.2010.11.052.

  • 40. Noorjahan M. Kumari V.D. Subrahmanyam M. & Panda L. (2005). Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Appl. Catal. B 57 291-298.

  • 41. Pare B.P. Singh S. & Jonnalagadda B. (2008). Visible light induced heterogeneous advanced oxidation process to degrade pararosanilin dye in aqueous suspension of ZnO. Indian J. Chem. 4 830-835.

  • 42. Kwan W.P. & Voelker B.M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral- catalyzed Fenton-like systems. Environ. Sci. Technol. 37 1150-1158. DOI: 10.1021/es020874g.

  • 43. Wang H. Xie C. Zhang W. Cai Z. Cai S. Yang Z. & Gui Y. (2007). Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mat. 141 645-652.

  • 44. Garrido-Ramírez E.G. Theng B.K.G. & Mora M.L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review Applied Clay Science 47 182-192. DOI: 10.1016/j.clay.2009.11.044.

  • 45. Higa T. (1995). What is EM Technology. College of Agriculture University of Ryukyus Okinawa Japan.

  • 46. EM Technology. (1998). Effective Microorganisms for a Sustainable Agriculture and Environment. From Link

  • 47. EM Trading (2000). Effective Microorganisms (EM) from Sustainable Community Development. From EM Technology Product Link

  • 48. Diver S. (2001). Nature Farming and Effective Microorganisms’ Rhizosphere II: Publications. from Steve Diver Link

  • 49. Mulbry W. & Karns J. (1989). Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl. Environ. Microbiol. 55 289-293.

  • 50. Borm P.J. David Robbins D. Haubold S. Kuhlbusch T. Fissan H. Donaldson K. Schins R. Stone V. Kreyling W. Lademann J. Krutmann J. Warheit D. & Oberdorster E. (2006). The potential risks of nanomaterials: a review carried out for ECETOC. Particle & Fibre Toxicol. 3 1-35. DOI: 0.1186/1743-8977-3-11.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 571 270 3
PDF Downloads 207 134 2