Removal of phenol from wastewater using activated waste tea leaves

Open access

This investigation enumerates the treatment of phenol contaminated synthetic wastewater by Activated Waste Tea Leaves (AWTL). Phosphoric acid was used for the modification of waste tea leaves. The effects of initial pH, biosorbent dose, contact time, and initial phenol concentration were studied on the phenol uptake from the synthetic solution. Kinetic modelling was performed using pseudo 1st and 2nd order kinetics. The Langmuir and Freundlich’s Models were employed to interpret the AWTL behaviour at various mass transfer gradients. The results show that the optimum values for pH, biosorbent dose and contact time were 2.2 g/L and 180 minutes, respectively. Pseudo 2nd order kinetic and the Langmuir’s Models best described the kinetic and equilibrium behaviours, respectively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Aksu Z. & Akpinar D. (2001). Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge Biochem. Eng. J. 7 183-193. DOI: 10.1016/S1369-703X(00)00126-1.

  • 2. Navarro A.E. Portales R.F. Sun-Kou M.R. & Llanos B.P. (2008). Effect of pH on phenol biosorption by marine seaweeds J. Hazard. Mater. 156 405-411. DOI: 10.1016/j. jhazmat.2007.12.039.

  • 3. Kumar N.S. & Min K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis kinetics and adsorption isotherms modelling Chem. Eng. J. 168 562-571. DOI: 10.1016/j.cej.2011.01.023.

  • 4. Aksu Z. & Yener J. (1998). Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge Proces. Biochem. 33 (6) 649-655. DOI: 10.1016/ S0032-9592(98)00029-6.

  • 5. Rao J.R. & Viraraghavan T. (2002). Biosorption of phenol from an aqueous solution by Aspergillus niger biomass Bioresour. Technol. 85 165-171. DOI: 10.1016/S0960-8524(02)00079-2.

  • 6. Volesky B. (2003). Sorption and Biosorption Bv sorbex Inc. Montreal 35-50.

  • 7. Aksu Z. & Akpınar D. (2000). Modelling of simultaneous biosorption of phenol and nickel(II) onto dried aerobic activated sludge Sep. Purif. Technol. 21 87-99. DOI:10.1016/ S1383-5866(00)00194-5.

  • 8. Auta M. & Hameed B.H. (2011). Preparation of waste tea activated carbon using potassium acetate as an activating 502-509. DOI: 10.1016/j.cej.2011.04.017.

  • 9. Wu J. & Yu H.Q.(2006). Biosorption of phenol and chlorophenols from aqueous solutions by fungal mycelia Proces. Biochem. 41 44-49. DOI: 10.1016/j.procbio.2005.03.065.

  • 10. Aksu Z. & Yener J. (2001). A comparative adsorption/ biosorption study of mono-chlorinated phenols onto various sorbents Waste Manage. 21 695-702. DOI: 10.1016/S0956- -053X(01)00006-X.

  • 11. Giahi M. Rakhshaee R. & Bagherinia M.A. (2011). Removal of methylene blue by tea wastages from the synthesis waste waters Chinese Chem. Lett. 22 225-228. DOI: 10.1016/j. cclet.2010.07.030.

  • 12. Murugesan G.S. Sathishkumar M. & Swaminathan K. (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass Bioresour. Technol. 97 483-487. DOI: 10.1016/j.biortech.2005.03.008.

  • 13. Hameed B.H. (2009). Spent tea leaves: A new non- -conventional and low-cost adsorbent for removal of basic dye from aqueous solutions J. Hazard. Mater. 161 753-759. DOI: 10.1016/j.jhazmat.2008.04.019.

  • 14. Sanga S. Lambertb J.D. Hoc C.T. & Yang C.S. (2011). The chemistry and biotransformation of tea constituents Pharmacol. Res. 64 87- 99. DOI: 10.1016/j.phrs.2011.02.007.

  • 15. Kazmi M. Feroze N. Naveed S. & Javed S.H. (2011). Biosorption of copper(II) on prunus amygdalus shell: Characterization biosorption size analysis kinetics equilibrium and mechanistic studies. Korean J. Chem. Eng. 28 (10) 2033-2040. DOI: 10.1007/s11814-011-0072-y.

  • 16. Feroze N. Kazmi M. & Ramzan N. (2013). Dead immobilized Rhizopus Arrhizus as potential biosorbent for copper removal. Korean J. Chem. Eng. 30 (1) 95-100. DOI: 10.1007/s11814-012-0088-y.

  • 17. Nie S.P. & Xie M.Y. (2011). A review on the isolation and structure of tea polysaccharides and their bioactivities FoodHydrocolloid. 25 144-149. DOI: 10.1016/j.foodhyd.2010.04.010.

  • 18. Karak T. & Bhagat R.M. (2010). Trace elements in tea leaves made tea and tea infusion: A review Food Res. Int. 43 2234-2252. DOI: 10.1016/j.foodres.2010.08.010.

  • 19. Malkoc E. & Nuhoglu Y. (2006). Fixed bed studies for the sorption of chromium(VI) onto tea factory waste Chem. Eng. Sci. 61 4363-4372. DOI:10.1016/j.ces.2006.02.005.

  • 20. Ho Y.S. (2006). Review of second - order models for adsorption systems. J. Hazard. Mater. B136 681-689. DOI: 10.1016/j.jhazmat.2005.12.043.

  • 21. Langmuir I. (1918). The adsorption of gases on plane surfaces of glass mica and platinum J. Am. Chem. Soc. 40 1361-1403. DOI: 10.1021/ja02242a004.

  • 22. Freundlich H. (1906). Über die adsorption in lösungen (Adsorption in solution) Z. Phys. Chem. 57 384-470 [in German].

  • 23. Dahlquist E.W. (1978). The meaning of Scatchard and Hill plots in: CHW Hirs SN Timmaseff (Eds.) Methods of Enzymology Academic press New York 270 - 299.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 368 216 4
PDF Downloads 152 112 2