Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent

Open access

Methanol and acetonitrile form a minimum azeotrope at 336.74 K, which contains methanol 76.89 mas%. The simulation and the experiment to separate the mixture by batch extractive distillation using aniline as entrainer is performed. Based on the experimental and simulative VLE data, aniline is chosen to be the suitable solvent. The sensitivity analysis about the number of stages, the refl ux ratio, the solvent feed stage and the solvent fl ow rate is conducted to obtain the optimal parameters and confi guration of the extractive distillation column with minimal energy requirements. The most appropriate confi guration is 30 theoretical stages. The optimal entrainer feeding stage is 8 with a solvent fl ow rate of 20kg/h and the refl ux ratio of 2.0, respectively. The simulation results show the effect of the main variables on the extractive distillation process. The experiment is carried out to corroborate the feasibility of the separation of methanol-acetonitrile by batch extractive distillation.

1. Mujtaba, I.M., (2004). Batch Distillation: Design and Operation. Imperial College Press ISBN: 1-86094-437-X.

2. Kim, K.J. & Diwekar, U.M., (2001). New area in batch distillation: computer aided analysis, optimal design and control. Rev. Chem. Eng. 17, 111-164. DOI: 10.1515/REVCE. 2001.17.2.111.

3. Stichlmair, J.G. & Fair, J.R., (1998). Distillation, Principlesand Practice. Wiley-VCH, New York ISBN: 0-471-25242-7.

4. Van Kaam, R., Rodriguez-Donis, I. & Gerbaud, V., (2008). Heterogeneous extractive batch distillation of chloroform-methanol- water: Feasibility and experiments. Chem. Eng. Sci. 63, 78-94. DOI:10.1016/j.ces.2007.09.005.

5. Wentink, A.E., Kuipers, N.J.M., Haanb, A.B., Scholtz, J. & Mulder, H., (2007). Olefi n isomer separation by reactive extractive distillation: modeling of vapour-liquid equilibria and conceptual design for 1-hexene purifi cation. Chem. Eng. Proc. 46, 800-809. DOI: 10.1016/j.cep.2007.03.009.

6. Xu, S. & Wang, H., (2006). A New entrainer for separation of tetrahydrofuran-water azeotropic mixture by extractive distillation. Chem. Eng. Proc. 45, 954-958. DOI: 10.1016/j. cep.2006.02.001.

7. Lei, Z., Zhoua, R., Duana, Z., (2002). Process improvement on separating C4 by extractive distillation. Chem. Eng.J. 85, 379-386. DOI: 10.1016/S1385-8947(01).

8. Pinto, R.T.P., Wolf-Maciel, M.R. & Lintomen, L., (2000). Saline extractive distillation process for ethanol purifi cation. Comput. Chem. Eng. 24, 1689-1694. DOI: 10.1016/S0098- 1354(00)00455-5.

9. Lang, P., Kovacs, Gy., Kotai, B., Gaal-Szilagyi, J. & Modla, G., (2006). Industrial Application of a New Batch Extractive Distillation Operational Policy. Distillation and Absorption 2006Symposium Series. (pp. 830-839, No. 152).

10. Lelkes, Z., Lang, P., Benadda, B., Otterbein, M. & Moszkowicz, P., (1998a). Batch extractive distillation: the process and the operational policies. Chem. Eng. Sci. 53, 1331-1348. DOI: 10.1016/S0009-2509(97)00420-X.

11. Lelkes, Z., Lang, P., Benadda, B. & Moszkowicz, P., (1998b). Feasibility of extractive distillation in a batch rectifi er. AIChE J. 44, 810-822. DOI: 10.1002/aic.690440406.

12. Amadeu Sum, K. & Stanley Sandler, I., (2002). Prediction of the phase behavior of acetonitrile and methanol with ab initio pair potentials. II. The mixture. J. Chem. Phys. 116, 7636-7644. DOI: 10.1063/1.1464823.

13. Batista, E. & Meirelles, A., (1997). Simulation and thermal integration SRV in extractive distillation column. J.Chem. Eng. Jpn. 3, 45-51. DOI:10.1252/jcej.30.45.

14. Doherty, M. & Malone, M., (2001). Conceptual Designof Distillation Systems. McGraw Hill: New York.

15. Laroche, L., Bekiaris, N., Andersen, H.W. & Morari, M., (1991). Homogeneous Azeotropic Distillation: Comparing Entrainers. Can. J . of Chem. Eng. 69, 1302-1319. DOI: 10.1002/ cjce.5450690611.

16. Yatim, H., Moszkowicz, P., Otterbein, M. & Lang, P., (1993). Dynamic simulation of a batch extractive distillation process. Comput. Chem. Eng. 17, 57-62. DOI: 10.1016/0098- 1354(93)80209-6.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 285 285 97
PDF Downloads 29 29 21