Electrically conductive acrylic pressure-sensitive adhesives containing carbon black

Open access

Electrically conductive acrylic pressure-sensitive adhesives containing carbon black

Acrylic pressure-sensitive adhesives (PSA) are non electrical conductive materials. The electrical conductivity is incorporated into acrylic self-adhesive polymer after adding electrically conductive additives like carbon black, especially nano carbon black. After an addition of electrical conductive carbon black, the main and typical properties of pressure-sensitive adhesives such as tack, peel adhesion and shear strength, are deteriorated. The investigations reveals that the acrylic pressure-sensitive adhesives basis must be synthesised with ameliorated initial performances, like high tack, excellent adhesion and very good cohesion. Currently, the electrical conductive solvent-borne acrylic PSA containing carbon black are not commercially available on the market. They are promising materials which can be applied for the manufacturing of diverse technical high performance self-adhesive products, such as broadest line of special electrically conductive sensitive tapes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Saurer W. (1991) Intrinsically conductive polymers. Kunststoffe 81 694-699.

  • Nasser K. (2004) Electroplating: basic principles processes and practice. Elsevier Oxford.

  • Skotheim T. & Reynolds J. (2007) Handbook of conducting polymers third edition conjugated polymers theory synthesis properties and characterization. Taylor & Francis Group LLC London.

  • Shen L. Wang F. Yang H. & Meng Q. (2011) The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym. Test. 30 442-448. DOI:10.1016/j.polymertesting.2011.03.007.

  • Naarmann H. (1988) Die elektrochemische Polymerisation. Ein interessantes Prinzip zur Synthese von elektrisch leitfähigen Polymeren. Angew. Makromol. Chem. 162 1-17. DOI: 10.1002/apmc.1988.051620101.

  • Mair H.J. & Roth S. (1989) Elektrisch leitende Kunststoff Carl Hanser Verlag München-Wien.

  • Czech Z. & Klementowska-Witkowska P. (2007) Electrical conductive acrylic pressure-sensitive adhesives. Pitture e Vernici European Coatings 11 101-108.

  • Danes F. Garnier B. & Dupuis T. (2005) Non-uniformity of the filler concentration and of the transverse thermal and electrical conductivities of filled polymer plates. Compos. Sci. Technol. 65 945-951. DOI:10.1016/j.compscitech.2004.10.020.

  • Poh B.T. Giam Y.F. & Yeong F.P. (2010) Tack and shear strength of adhesives prepared from styrene-butadiene rubber (SBR) using gum rosin and petro resin as tackifiers. J. Adhesion. 86 844-856. : DOI: 10.1080/00218464.2010.498734.

  • Gdalin B.E. Bermesheva E.V. Shandryuk G.A. & Feldstein M.M. (2011) Effect of Temperature on Probe Tack Adhesion: Extension of the Dahlquist Criterion of Tack. J. Adhesion 87 111-138. DOI:10.1080/00218464.2011.545325.

  • Bai Y.P. Zhao L. & Shao L. (2010) Hybrid emulsifiers enhancing polymerization stabilities and properties of pressure sensitive adhesives. J. Appl. Polym. Sci. 115 1125-1130. DOI: 10.1002/app.31211.

  • Novak I. Krupa I. & Chodak I. (2003) Analysis of correlation between percolation concentration and elongation at break in filled electroconductive epoxy-based adhesives. Eur. Polym. J. 39 585-592. DOI:10.1016/S0014-3057(02)00271-9.

  • Feller J.F. & Grohens Y. (2005) Electrical response of Poly(styrene)/carbon black conductive polymer composites (CPC) to methanol toluene chloroform and styrene vapors as a function of filler nature and matrix tacticity. Synthetic Met. 154 193-196. DOI:10.1016/j.synthmet.2005.07.050.

  • Novak I. Krupa I. & Janigowa I. (2005) Hybrid electro-conductive composites with improved toughness filled by carbon black. Carbon 43 841-848. DOI:10.1016/j.carbon.2004.11.019.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 423 152 5
PDF Downloads 136 66 2