Phenol oxidation with hydrogen peroxide using Cu/ZSM5 and Cu/Y5 catalysts

Open access

Phenol oxidation with hydrogen peroxide using Cu/ZSM5 and Cu/Y5 catalysts

In this work, catalytic activity and stability of Cu/Y5 and Cu/ZSM5 zeolites in phenol oxidation with hydrogen peroxide were examined. The catalyst samples were prepared by the ion exchange method of the protonic form of commercial zeolites. The catalysts were characterized by the powder X-ray diffraction (XRD), AAS, while the adsorption techniques were used to measure the specific surface area.

The thermal programmed desorption of NH3 (NH3-TPD) was used for measuring the total number of acid sites formed on the surface of zeolites.

Catalytic performance of the prepared samples was monitored in terms of phenol, hydrogen peroxide and total organic carbon (TOC) conversion, by-product distribution and a degree of copper leached into the aqueous solution.

It was found that the activity of Cu/Y5 catalyst was generally higher than that of Cu/ZSM5 and that unlike Cu/ZSM5, Cu/Y5 catalyzed phenol oxidation more completely.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Busca G. Berardinelli S. Resini C. & Arrighi L. (2008). Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mat. 160 265-288 DOI: org/10.1016/j.jhazmat.2008.03.045.

  • Al-Hayek N. & Doré M (1990). Oxidation of phenols in water by hydrogen peroxide on alumine supported iron. Water Res. 24 973-982 DOI:10.1016/0043-1354(90)90119-Q.

  • Cuzzola A. Bernini M. & Salvadori P. (2002). A preliminary study on iron species as heterogeneous catalysts fort he degradation of linear alkylbenzene sulphonic acids by H2O2. Appl. Catal. B. 36 231-237. doi:10.1016/S0926-3373(01)00311-3

  • Parvulescu V. & Su B.L. (2001). Iron cobalt or nickel substituted MCM-41 molecular sieves for oxidation of hydrocarbons. Catal. Today 69 315-322. doi:10.1016/S0920-5861(01)00384-4.

  • Hu X. Lam F. Cheung L. Chan K. Zhao X. & Lu G. (2001). Copper/MCM-41 as catalyst for photochemically enhanced oxidation of phenol by hydrogen peroxide. Catal. Today 68 129-133. doi:10.1016/S0920-5861(01)00273-5.

  • Decyk P. Trejda M. & Ziolek M. (2005). Iron containing mesoporous solids: preparation characterization and surface properties. C. R. Chimie 8 635-654. DOI:10.1016/j.crci.2004.11.022.

  • Kumar D. Varma S. Dey G.K. & Gupta N.M. (2004). Hydrothermal synthesis characterization and catalytic properties of urano-silicate mesoporous molecular sieves. Micropor. Mesopor. Mat. 73 181-189. DOI:10.1016/j.micromeso.2004.05.010.

  • Fajerwerg K. Foussard J. Perrard A. & Debellefontaine H. (1997). Wet oxidation of phenol by hydrogen peroxide: The key role of pH on the catalytic behaviour of Fe-ZSM-5. Water Sci. Technol. 35 103-110 DOI:10.1016/S0273-1223(97)00015-2.

  • Choi J.S. Yoon S.S. Jang S.H. & Ahn W.S. (2006) Phenol hydroxylation using Fe-MCM-41 catalysts. Catal. Today 111 280-287 DOI:10.1016/j.cattod.2005.10.037.

  • Valange S. Gabelica Z. Abdellaoui M. Clacens J.M. & Barrault J. (1999). Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol. Micropor. Mesopor. Mat. 30 177-185.

  • Martinez F. Melero J. A. & Gordo L. (2001). Wet peroxide oxidation of phenolic solutions over different iron containing zeolitic material. Ind. Eng. Chem. Res. 40 3921-3928.

  • Zrnčević S. & Gomzi Z. (2005). CWPO: An environmental solution for pollutant removal from wastewater. Ind. Eng. Chem. Res. 44 6110-6114.

  • Calleja G. Melero J.A. Martinez F. & Molina R. (2005). Activity and resistance of iron-containing amorphous zeolitic and mesostructured materials for wet peroxide oxidation of phenol Water Res. 39 1741-1750. doi:10.1016/j.watres.2005.02.013.

  • Maduna Valkaj K. Katović A. & Zrnčević S. (2007). Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst. J. Hazard. Mat. 144 663-667 DOI:10.1016/j.jhazamat.2007.01.099.

  • Centi G. Perathoner S. Torre T. & Verduna M.G. (2000). Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts. Catal. Today 55 61-69. DOI: 10.1016/S0920-5861(99)00226-6

  • Maduna V. K. Katović A. Tomašić V. & Zrnčević S. (2008). Characterization and activity of the Cu/ZSM5 catalysts for the oxidation of phenol with hydrogen peroxide. Chem. Eng. Tech. 31 1-7.

  • Guélou E. Barrault J. Fournier J. & Tatibouët J.M. (2003). Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Appl. Catal. B 44 1-8 DOI:10.1016/S0926-3373(03)00003-1.

  • Guo J. & Al-Dahhan M. (2003). Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind. Eng. Chem. Res. 42 2450-2460.

  • Catrinescu C. Teodosiu C. Macoveanu M. Miehe-Brendlé J. & Le Dred R. (2003). Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res. 37 1154-1160. DOI: 10.1016/S0043-1354(02)00449-9.

  • Barrault J. Abdellaoui M. Bouchoule C. Majeste A. Tatibouet J.M. Louloudi A. Papayannakos N. & Gangas N.H. (2000) Catalytic wet peroxide oxydation over mixed (Al-Fe) pillared clays. Appl. Catal. B: Environ. 27 225-230. DOI: 10.1016/S0926-3373(00)00170-3.

  • Guelou E. Barrault J. Fournier J. & Tatibouet J. (2003). Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron Appl. Catal. B 44 1-8. DOI:10.1016/S0926-3373(03)00003-1.

  • Rey A. Faraldos M. Casas J.A. Zazo J.A. Bahamonde A. & Rodriguez J.J. (2009). Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: influence of iron precursor and activated carbon surface. Appl. Catal. B 86 69-77

  • Zazo J.A. Casas J.A. Mohedano A.F. & Rodriguez J.J. (2006). Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B 65 261-268 DOI:10.1016/j.apcatb.2006.02.008.

  • Liou R.M. Chen S.H. Hung M.Y. Hsu C.S. & Lai J.Y. (2005). Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Chemosphere 59 117-125 DOI:10.1016/j.chemosphere.2004.09.080.

  • Liou R.M. Chen S.H. Hung M.Y. & Hsu C.S. (2004). Catalytic oxidation of pentachlorophenol in contaminated soil suspensions by Fe3+-resin/H2O2. Chemosphere 55 1271-1280 doi:10.1016/j.chemosphere.2003.12.015.

  • Sabhi S. & Kiwi J. (2001). Degradation of 24-dichlorophenol by immobilized iron catalysts. Water Res. 35 1994-2002 DOI :10.1016/S0043-1354(00)00460-7.

  • Castro I.U. Stüber F. Fabregat A. Font J. Fortuny A. & Bengoa C. (2009). Supported Cu(II)polymer catalysts for aqueous phenol oxidation. J. Hazard. Mater. 163 809-815 DOI:10.1016/j.jhazamat.2008.07.054.

  • Melero J.A. Calleja G. Martinez F. Molina R. & Pariente M.I. (2007). Nanocomposite Fe2O3/SBA-15: An efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chem. Eng. J. 131 245-256 DOI:10.1016/j.cej.2006.12.007.

  • Arena F. Giovenco R. Torre R. Venuto A. & Parmaliana A. (2003). Activity and resistance to leaching of Cu-based catalyst in the wet oxidation of phenol. Appl. Catal. B 45 51-62 DOI:10.1016/S0926-3373(03)00163-2.

  • Weitkamp J. (2000). Zeolites and catalysis. Solid State Ionic 131 175-188. DOI:10.1016/S0167-2738(00)00632-9.

  • Urquieta-González E.A. Martins L. Peguin R.P.S. & Batista M.S. (2002). Identification of extra-framework species on Fe/ZSM-5 and Cu/ZSM-5 catalysts typical microporous molecular sieves with zeolitic structure. Mat. Res. 5 321-327 DOI: 10.1590/S1516-14392002000300017.

  • Dubey A. Rives V. & Kannan S. (2002). Catalytic hydroxilation of phenol over ternary hydrotalacites containing Cu Ni and Al. J. Mol. Catal. A-Chem. 181 151-160 DOI: 10.1016/S1381-1169(01)00360-0.

  • Čapek L. Dedeček J. Wichterlová B. Cider L. Jobson E. & Tokarová V. (2005). Cu-zeolite highly active in reduction of NO with decane. Effect of zeolite structural parameters on the catalyst performance. Appl. Catal. B 60 147-153 DOI:10.1016/j.apcatb.2005.02.026.

  • Atoguchi T. Konougi T. Yamamoto T. & Yao S. (2004). Phenol oxidation into catehol and hydroquinone over H-MFI H-MOR H-USY and H-BEA in the presence of ketone. J. Mol. Catal. A. 220 183-187 DOI:10.1016/j.molcata.2003.10.026.

  • Bahranowski K. Dula R. Gasior M. Labanowska M. Michalik A. Vartikian L.A. & Serwicka E.M. (2001). Oxidation of aromatic-hydrocarbons with hydrogen-peroxide over Zn Cu Al-layered double hydroxides. Appl. Clay Sci. 18 93-101 DOI:10.1016/S0169-1317(00)00033-8.

  • Fajerwerg K. & Debellefontaine H. (1996). Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst. Appl. Catal. B. 10 L229-L235. doi:10.1016/S0926-3373(96)00041-0.

  • Rivas F.J. Kolaczkowski S.T. Beltran F.J. & Mc Lurgh D.B. (1999). Hydrogen peroxide promoted wet air oxidation of phenol: influence of operating conditions and homogeneous metal catalysts. J. Chem. Technol. Biotechnol. 74 390-398.

  • Santos A. Yustos P. Quintanilla A. Rodriguez S. & Garcia-Ochoa F. (2002). Route of the catalytic oxidation of phenol in aqueous phase. Appl. Catal. B 39 97-113 DOI:10.1016/S0926-3373(02)00087-5.

  • Pintar A. & Levec J. (1994). Catalytic liquid-phase oxidation of phenol aqueous solutions. A Kinetic investigation. Ind. Eng. Chem. Res. 33 3070-3077.

  • Alejandre A. Medina F. Fortuny A. Salagre P. & Sueiras J.E. (1998). Characterisation of copper catalysts and activity for the oxidation of phenol aqueous solutions. Appl. Catal. B 16 53-67 DOI :10.1016/S0926-3373(97)00062-3.

  • Perathoner S. & Centi G. (2005). Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams Top. Catal. 33 207-224. DOI: 10.1007/s11244-005-2529-x.

  • Huang C.P. & Huang Y.H. (2000). Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides. Appl. Catal. A 346 140-148 DOI:10.1016/j.apcata.2008.05.017.

  • Santos A. Yustos P. Quintanilla A. Ruiz G. & Garcia-Ochoa F. (2005). Study of the copper leaching in the wet oxidation of phenol with Cu-Based catalysts: Cause and effects. Appl. Catal. B 61 323-333 DOI:10.1016/j.apcatb.2005.06.006.

  • Limson J. & Nyokong T. (1997). Substituted catechol as complexing agents for determination of bismuth lead copper and cadmium by adsorptive stripping voltametry. Analyt. Chim. Acta 344 87-95 DOI:10.1016/S0003-2670(96)00585-5.

  • Sotelo J.L. Ovejero G. Martínez F. Melero J.A. & Milieni A. (2004). Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1-xCuxO3 perovskite catalyst. Appl. Catal. B 47 281-294 DOI:10.1016/j.apcatb.2003.09.007.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 451 181 0
PDF Downloads 170 122 9