Economically viable synthesis of Fe3O4 nanoparticles and their characterization

Open access

Economically viable synthesis of Fe3O4 nanoparticles and their characterization

Nano iron oxide particles (Fe3O4) were synthesized by coprecipitation of Fe2+ and Fe3+ by ammonia solution in the aqueous phase. Various instrumentation methods such as X ray Diffractometry (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Vibrating Sample Magnetometery (VSM) were used to characterize the properties of nanoparticles. The size of the nanoparticles was measured and was found to be between 10 to 15 nm. The value of saturation magnetization of the nanoparticles was found to be 55.26 emu/g. The BET surface area of nano iron oxide particles measured to be 86.55 m2/g.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Liu Z.L. Wang H.B. Lu Q.H. Du G.H. Peng L. Du Y.Q. Zhang S.M. & Yao K.L. (2004). Synthesis and characterization of ultra fine well dispersed magnetic nano particles. J. Magnetism Magnetic Mater. 283 258-262. DOI:10.1016/j.jmmm.2004.05.031.

  • Salazar J.S. Roman M.A.C. & Gomez L.B. (2007). Structural and magnetic domains characterization of magnetic nanoparticles. Mater. Sci. Eng. C. 27 317-1320. DOI:10.1016/j.msec.2006.07.027.

  • Thapa D. Palkar V.R. Kurup M.B. & Malik S.K. (2004). Properties of magnetic nano particles synthesized through a novel chemical route. Mater. Lett. 58 2692-2694. DOI:10.1016/j.matlet.2004.03.045.

  • Sharma Y.C. Srivastava V. Singh V.K. Kaul S.N. & Weng C.H. (2009). Nanoadsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol. 30 583-609. DOI:10.1080/09593330902838080.

  • Ozkaya T. Toprak M.S. Baykal A. Kavas. H. Koseoglu Y. & Aktas B. (2009). Synthesis of Fe2O3 nanoparticles at 100 °C and its magnetic characterization. J. Alloy. Comp. 472 18-23. DOI:10.1016/j.jallcom.2008.04.101.

  • Sharma Y.C. Srivastava V. Upadhyay S.N. & Weng C.H. (2008). Aluminum nanoparticles for the removal of Ni(II) from aqueous solutions. Ind. Eng. Chem. Res. 47 8095-8100. DOI: 10.1021/ie800831v.

  • Swihart M.T. (2003). Vapor phase synthesis of nanoparticles. Curr. Opin. Colloid Interf. Sci. 8 127-133. DOI:10.1016/S1359-0294•03.00007-4.

  • Feng N.S. Yang L. Hua X. & Hua L.Z. (2005). Removal of hexavalent chromium from aqueous solutions by iron nanoparticles. J. Zhejing Univ. Sci. 6B 1022-1027. DOI: 10.1007/BF02888495.

  • Murray C.B. Kagan C.R. & Bawendi M.G. (2000). Synthesis and characterization of monodisperse nano crystals and close packed assemblies. Annu. Rev. Mater. Sci. 30 545-610. DOI: 10.1146/annurev.matsci.30.1.545.

  • Hann H. (1997). Gas phase synthesis of nanocrystalline materials. Nanostruct. Mater. 9 3-12. PII 80965-9773(97)ooo13-5.

  • Biasi R.S.D. Figueiredo A.B.S. Fernandes A.A.S. & Larica C. (2007). Synthesis of cobalt ferrite nanoparticles using combustion waves. Solid State Commun. 144 15-17. DOI:10.1016/j.ssc.2007.07.031.

  • Nomanbhay M. & Palanisamy K. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic J Biotechnol. 8 43-53.

  • Sun Y. Zhang J.P. Yang G. & Li Z.H. (2007). Preparation of activated carbon with large specific surface area from reed black liquor. Environ. Technol. 28 491-497. DOI: 10.1080/09593332808618810.

  • Kanel S.R. Charlet B. & Choi L. (2005). Removal of As(III) from ground water by nanoscale zerovalent iron. Environ. Sci. Technol. 39 1291-1298. DOI: 10.1021/es048991u.

  • Verges M.A. Costo R. Roca A.G. Marco J.F. Goya G.F. Serna C.J. & Morales M.P. (2008). Uniform and water stable magnetic nanoparticles with diameters around the monodomain-multidomain limit. J. Phys. D: Appl. Phys. 41 134003-134013. DOI: 10.1088/0022-3727/41/13/134003.

  • Qi B. Li D. Ni & Zheng H. (2007). A facile reduction route to the preparation of single-crystalline iron nanocubes Chem. Lett. 36 722-723. DOI:10.1246/cl.2007.722.

  • Iida H. Takayanagi K. Nakanishi T. & Osaka T. (2007). Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interf. Sci. 314 274-280. DOI:10.1016/j.jcis.2007.05.047.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 340 161 0
PDF Downloads 151 111 0