Preparation of carbon nanotubes using cvd CVD method

Open access

Preparation of carbon nanotubes using cvd CVD method

In this work preparation and characteristic of modified nanocarbons is described. These materials were obtained using nanocrystalline iron as a catalyst and ethylene as a carbon source at 700°C. The influence of argon or hydrogen addition to reaction mixture was investigated. After ethylene decomposition samples were hydrogenated at 500°C. As a results iron carbide (Fe3C) in the carbon matrix in the form of multi walled carbon nanotubes was obtained. After a treatment under hydrogen atmosphere iron carbide decomposed to iron and carbon and small iron particles agglomerated into larger ones.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Balogh Z. Halasi G. Korbély & Hernadi K. (2008). CVD-syntesis of multiwall carbon nanotubes over potassium-doped supported catalysts. Appl. Catal. A: General 344 191-197. doi:10.1016/j.apcata.2008.04.019.

  • Singh B. K. Ryu H. Rajeev C. C. Nguyen D. H. Park S. J. Kim S. & Lee J. R. (2006). Growth of multiwalled carbon nanotubes from acetylene over in situ formed Co nanoparticles on MgO support. Solid State Commun. 139 102-107. doi:10.1016/j.ssc.2006.05.021.

  • Reddy N. K. Meunier J-L. & Coulombe S. (2006). Growth of carbon nanotubes directly on a nickel surface by thermal CVD. Mater. Sci. 60 3761-3765. doi:10.1016/j.matlet.2006.03.109.

  • Park C. & Keane M. A. (2004). Catalyst support effect in the growth of structured carbon from the decomposition of ethylene over nickel. J. Catal. 221 386-399. doi:10.1016/j.jcat.2003.08.014.

  • Chen Ch.M. Dai Y. M. Huang J. G. & Jehng J. M. (2006). Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44 1808-1820. doi:10.1016/j.carbon.2005.12.043.

  • Tobias G. Shao L. D. Salzmann C. G. Huh Y. & Green M. L. H. (2006). Purification and opening of carbon nanotubes using steam. J. Phys. Chem. B 110 22318-22322. doi: 10.1021/jp0631883.

  • Wang Y. H. Shan H. W. Hauge R. H. Pasquali M. & Smalley R. A. (2007). A highly selective one-pot purification method for single-walled carbon nanotubes. J. Phys. Chem. B 111 1249-1252. doi: 10.1021/jp068229+.

  • Hernadi K. Siska A. Thien-Nga L. Forro L. & Kiricsi I. (2001). Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics 141&142 203-209. doi:10.1016/S0167-2738(01)00789-5.

  • Pełech I. & Narkiewicz U. (2009). Studies of hydrogen interaction with carbon deposit containing carbon nanotubes. J. Non-Cryst. Solids 355 1370-1375. doi: 10.1016/j.jnoncrysol.2009.05.025.

  • Fonseca A. Hernadi K. Piedigrosso P. Colomer J. F. Mukhopadhyay K. Doome R. Lazarescu S. Brio L. P. Lambin Ph. Thiry P. A. Bernaerts D. & Nagy J. B. (1998). Synthesis of single- and multi-wall nanotubes over supported. Appl. Phys. A 67 11-22. doi: 10.1007/s003390050732.

  • Narkiewicz U. Pełech I. Rosłaniec Z. Kwiatkowska M. & Arabczyk W. (2007). Preparation of nanocrystalline iron-carbon materiale as fillers for polymers. Nanotechnology 18 405601. doi:10.1088/0957-4484/18/40/405601.

  • Rocco A. M. Cristiane C. A. Macedo M. I. F. Maestro L. F. & Herbst M. H. (2008). Purification of cataltically produced carbon nanotubes for use as support for fuel cell cathode Pt catalyst. J. Mater. Sci. 43 557-567. doi: 10.1007/s10853-007-1779-3.

  • Raymundo-Pinero E. Cazorla-Amorós D. Salina-Martinez de Lecea C. & Linares-Solano A. (2000). Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step. Carbon 38 335-344. doi: 10.1016/S0008-6223(99)00109-8.

  • Raymundo-Pinero E. Cazorla-Amorós D. & Linares-Solano A. (2001). Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres. Carbon 39 231-242. doi:10.1016/S0008-6223(00)00119-6.

  • Khavrus V. O. Lemesh N. V. Gordijchuk S. V. Tripolsky A. I. Iwashchenko T. S. Biliy M. M. & Strizhak P. E. (2008). Chemical catalytic vapor deposition (CCVD) synthesis of carbon annotubes by decomposition of ethylene on metal (Ni Co Fe) nanoparticles. React. Kinet. Catal. Lett. 93 295-303. doi: 10.1007/s11144-008-5225-6.

  • Donato M. G. Messina G. Milone C. Pristone A. & Santangelo S. (2008). Experiments on C nanotubes synthesis by Fe-assisted ethane decomposition. Diam. Relat. Mater. 17 318-324. doi: 10.1016/j.diamond.2007.12.043.

  • Nagaraju N. Fonseca A. Konya Z. & Nagy J. B. (2002). Alumina and silica supported metal catalysts for the production of carbon nanotubes. J. Mol. Catal. A-Chem. 181 57-62. doi: S1381-1169(01)00375-2.

  • Escobar M. Moreno M. S. Candal R. J. Marchi M. C. Caso A. Polosecki P. I. Rubiolo G. H. & Goyanes S. (2007). Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics. Appl. Surf. Sci. 254 251-256. doi: 10.1016/j.apsusc.2007.07.044.

  • Tripol'skii A. I. Lemesh N. V. Khavrus' V. A. & Strizhak P. E. (2008). Morphology of carbon nanotubes obtained by decomposition of ethylene on nickel nanoparticles at various rates of flow and concentration of C2H2. Theor. Exp. Chem. 44 240-244. doi: 0040-5760/08/4404-0240.

  • Venegoni D. Serp P. Feurer R. Kihn Y. Vahlas C. & Kalck P. (2002). Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40 1799-1807. doi: S0008-6223(02)00057-X.

  • Ermakova M. A. Ermakov D. Y Chuvilin A. L. & Kushinov G. G. (2001). Decomposition of methane over iron catalyst at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201 183-197. doi:10.1006/jcat.2001.3243.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 486 275 2
PDF Downloads 162 104 1