Photocatalytic hydrogen generation over alkali niobates in the presence of organic compounds

Open access

Photocatalytic hydrogen generation over alkali niobates in the presence of organic compounds

The photocatalytic efficiency of alkali niobate-based compounds (Li, Na, K) for hydrogen generation has been investigated. The systematic study showed that the highest photocatalytic activity was observed in the case of Na/Nb2O5 catalyst which contained sodium niobate (NaNbO3) phase and that the most efficient electron donor for hydrogen generation was formic acid. In addition, the effect of organic donor (HCOOH) concentration on the amount of the evolved hydrogen was studied.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Shon H. K. Vigneswaran S. Ngo H. H. Kim J.-H. & Kandasamy J. (2007). Effect of flocculation as a pretreatment to photocatalysis in the removal of organic matter from wastewater. Sep. Purif. Technol. 56 388-391. DOI: 10.1016/j.seppur.2007.04.023.

  • Selli E. Bianchi C. L. Pirola C. Cappelletti G. & Ragaini V. (2008). Efficiency of 14-dichlorobenzene degradation in water under photolysis photocatalysis on TiO2 and sonolysis. J. Hazard. Mater. 153 1136-1141. DOI: 10.1016/j.jhazmat.2007.09.071.

  • Ji S. M. Jun H. Jang J. S. Son H. Ch. Borse P. H. & Lee J. S. (2007). Photocatalytic hydrogen production from natural seawater. J. Photochem. Photobiol. A. 189 141-144. DOI: 10.1016/j.jphotochem.2007.01.011.

  • Ikeda M. Kusumoto Y. Somekawa S. Ngweniform P. & Ahmmad B. (2006). Effect of graphite silica on TiO2 photocatalysis in hydrogen production from water-methanol solution. J. Photochem. Photobiol. A. 184 306-312. DOI: 10.1016/j.jphotochem.2006.04.031.

  • Liu Y. Guo L. Yan W. Liu H. Liu Y. Guoa L. Yan W. & Liu H. (2006). A composite visible-light photocatalyst for hydrogen production. J. Power Sources. 159 1300-1304. DOI: 10.1016/j.jpowsour.2005.11.105.

  • Li Y. Lu G. & Li S. (2003). Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere. 52 843-850. DOI: 10.1016/S0045-6535(03)00297-2.

  • Li Y. Xie Y. Peng S. Lu G. & Li S. (2006). Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2. Chemosphere. 63 1312-1318. DOI: 10.1016/j.chemosphere.2005.09.004.

  • Li Y. Lu G. & Li S. (2001). Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Appl. Catal. A. 214 179-185.

  • Kato H. & Kudo A. (1998). New tantalate photocatalysts for water decomposition into H2 and O2. Chem. Phys. Lett. 295 487-492.

  • Zielińska B. Arabczyk A. & Kaleńczuk R. J. (2007). Preparation of Nb2O5 photocatalysts by alkali metals (Li Na K) and its photocatalytic performance. Polish J. Chem. 81 1355-1362.

  • Zielińska B. Borowiak-Palen E. & Kalenczuk R. J. (2008). Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors. International J. Hydrogen Energy. 33 1797-1802. DOI: 10.1016/j.ijhydene.2008.02.00.1

  • Zielińska B. Borowiak-Palen E. & Kalenczuk R. J. (2008). Preparation and characterization of lithium niobate as a novel photocatalyst in hydrogen generation. J. Phys. Chem. Solid. 69 236-242. DOI: 10.1016/j.jpcs.2007.09.001.

  • Gondal M. A. Hameed A. & Yamani Z. H. (2004). Hydrogen generation by laser transformation of methanol using n-type WO3 semiconductor catalyst. J. Mol. Catal. A. 222 259-264. DOI: 10.1016/j.molcata.2004.08.022.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 54 0
PDF Downloads 81 33 1