Reactive oxygen radicals – the therapeutic effectiveness of antioxidants

Open access

Abstract

Oxidative stress occurring in cells is a consequence of an excessive activity of reactive oxygen forms, resulting from an imbalance between the release of free oxygen radicals and their removal from the cell by antioxidant systems. 90% of reactive oxygen radicals emerge in mitochondrial respiratory chain during an incomplete four-electron oxygen reduction. The remaining 10% originate from different reactions occurring in the cell. The established compounds are characterised by a short half-life and are highly reactive. Sparse quantities of free oxygen radicals have a positive effect on cell functions. Oxidative stress leads to damage in cellular membranes, enzymatic and non-enzymatic proteins, as well as DNA. Therapy with antioxidants as exogenous dietary supplements aims at preventing or reducing the risk of development of diseases involving the presence of the oxygen radicals. Whether the antioxidant therapy will bring positive or negative effects depends on numerous factors that need to be considered before their inclusion in the applied treatment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Nathan C. Specifity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 2003; 111: 769-778 DOI 10.1172/JCI200318174;

  • 2. Bartosz G. Druga twarz tlenu. Wolne rodniki w przyrodzie. Wyd. 2 zm. Warszawa: Wydawnictwo Naukowe PWN 2004. Polish [Second face of oxygen. Free radical in nature];

  • 3. Ponczek M.B. Wachowicz B.: Oddziaływanie reaktywnych form tlenu i azotu z białkami. Post. Biochem. 2004; 51: 140–145. Polish [Interaction of reactive oxygen and nitrogen species with proteins];

  • 4. Cadenas E. Mitochondrial free radical production and cell signaling. Mol Aspects Med.2004; 25: 17-26 DOI 10.1016/j.mam.2004.02.005;

  • 5. Dröge W. Free radicals in the physiology control of cell function. Physiol. Rev. 2002; 82: 47-95 DOI 10.1152/physrev.00018.2001;

  • 6. Das KC White CW. Redox system of the cell: possible links and implications. Proc. Nat. Acad. Sci. USA. 2002; 99:9617-9618 DOI 10.1073/pnas.162369199;

  • 7. Pratico D. Alzheimer’s disease and oxygen radicals: new insights. Biochem. Pharmacol. 2002; 63: 563-567 DOI 10.1016/S0006-2952(01)00919-4;

  • 8. Perry G Nunomura A Hirai K Znu X Perez M Avila J et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free radic Biol Med 2002; 33: 1475-1479 DOI 10.1016/S0891-5849(02)01113-9;

  • 9. Marnett LJ Riggins JN West JD. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. I. Clin. Invest.2003; 111: 583-593 DOI: 10.1172/JCI200318022;

  • 10. Valko M Leibfritz D Mancol J Cronin MTD Mazur M Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol.2007; 39: 44-84 DOI 10.1016/j.biocel.2006.07.001;

  • 11. Zabłocka A Janusz M. Dwa oblicza wolnych rodników tlenowych. Post Hig Med. Dosw.2008; 62: 118-124 Polish [The two faces of reactive oxygen species];

  • 12. Karpińska A. Gromadzka G. Stres oksydacyjny I naturalne mechanizmy antyoksydacyjne-znaczenie w procesie neurodegeneracji. Od mechanizmów molekularnych do strategii terapeutycznych. Post Hig Med Dosw 2013; 67:43-53 Polish [Oxidative stress and natural antioxidant mechanisms: the role in neurodegeneration. From molecular mechanisms to therapeutic strategies];

  • 13. Gutowicz M. Wpływ reaktywnych form tlenu na ośrodkowy układ nerwowy. Post Hig Med Dosw 2011; 65: 104-113 Polish [The influence of reactive oxygen species on the central nervous system];

  • 14. Fang YZ Yang S Wu G. Free radical antioxidants and nutrition. Nutrition 2002; 18:872-879 DOI: 10.1016/S0899-9007(02)00916-4;

  • 15. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 2006; 97:1634-1658 DOI: 10.1111/j.1471-4159.2006.03907.x;

  • 16. Pastore A Federici G Bertini E Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta. 2003; 333:19-39 DOI 10.1016/S0009-8981(03)00200-6;

  • 17. Kehrer JP Klotz LO. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health. Crit Rev Toxicol. 2015; 45(9):765-98. DOI 10.3109/10408444.2015.1074159;

  • 18. Gregório BM De Souza DB de Morais Nascimento FA Pereira LM Fernandes-Santos C. The potential role of antioxidants in metabolic syndrome. Curr Pharm Des. 2015; 22: 859 - 869 DOI 10.2174/1381612822666151209152352;

  • 19. Goszcz K Deakin SJ Duthie GG Stewart D Leslie SJ Megson IL. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front Cardiovasc Med. 2015; 2:29. DOI 10.3389/fcvm.2015.00029;

  • 20. Simone CB Simone NL Simone V Simone CB. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival part 1. Altern Ther Health Med. 2007;13(1):22-28;

  • 21. Miyanishi K Hoki T Tanaka S Kato J. Prevention of hepatocellular carcinoma: Focusing on antioxidant therapy. World J Hepatol. 2015; 7(3):593-9. doi: 10.4254/wjh.v7.i3.593;

  • 22. Martinez-Outschoorn UE Balliet R Lin Z Whitaker-Menezes D Birbe RC Bombonati A et al.. BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies. Cell Cycle. 2012; 11(23):4402-13. doi: 10.4161/cc.22776;

  • 23. Wambi C Sanzari J Wan XS Nuth M Davis J Ko YH et al. Dietary Antioxidants Protect Hematopoietic Cells and Improve Animal Survival after Total-Body Irradiation. Radiat Res. 2008; 169(4): 384–396 DOI 10.1667/RR1204.1;

  • 24. Brown SL Kolozsvary A Liu J Jenrow KA Ryu S Kim JH. Antioxidant Diet Supplementation Starting 24 Hours after Exposure Reduces Radiation Lethality. Radiat Res. 2010; 173(4): 462–468 DOI 10.1667/RR1716.1;

  • 25. Rafieian-Kopaie M Nasri H. On the Occasion of World Cancer Day 2015; the Possibility of Cancer Prevention or Treatment with Antioxidants: The Ongoing Cancer Prevention Researches. Int J Prev Med. 2015; 6: 108 DOI 10.4103/2008-7802.169077;

  • 26. Reliene R Schiestl RH. Experimental antioxidant therapy in ataxia telangiectasia. Clin Med Oncol. 2008; 2:431-436;

  • 27. Reichenbach J Schubert R Schwan C Müller K Böhles HJ Zielen S. Anti-oxidative capacity in patients with ataxia telangiectasia. Clin Exp Immunol. 1999; 117(3): 535–539 DOI 10.1046/j.1365-2249.1999.01000.x;

  • 28. Peyser CE Folstein M Chase GA Starkstein S Brandt J Cockrell JR et al. Trial of d-alpha-tocopherol in Huntington’s disease. Am J Psychiatry. 1995; 152(12):1771-5 DOI 10.1176/ajp.152.12.1771;

  • 29. Jin H Kanthasamy A Ghosh A Anantharam V Kalyanaraman B Kanthasamy AG. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta. 2014; 1842(8): 1282–1294 DOI 10.1016/j.bbadis.2013.09.007;

  • 30. Underwood BR Imarisio S Fleming A Rose C Krishna G Heard P et al. Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Hum Mol Genet. 2010; 19(17): 3413–3429 DOI 10.1093/hmg/ddq253;

  • 31. Mut-Salud N Álvarez PJ Garrido JM Carrasco E Aránega A Rodríguez-Serrano F. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results. Med Cell Longev. 2016; 2016: 6719534 DOI 10.1155/2016/6719534.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 351 174 7
PDF Downloads 115 59 0