Zinc Regime in the Sewage Sludge-Soil-Plant System of a City Waste Water Treatment Pond

Open access

Abstract

The sewage sludge from wastewater treatment plant of Iasi, a city with 300,000 inhabitants, for domestic and industrial origin, was stored in a mud pond arranged on an area of 18,920 m2. Chemical analyzes of the sludge showed that, of all the chemical elements determined, only Zn is found at pollutant level (5739 mg∙kg-1), i.e. almost 30 times more than the maximum allowable limit for Zn in soil and 45 times more than the Zn content of the soil on which the mud pond has been set. Over time, the content of Zn in the mud pond, but also from soil to which it has been placed, has become upper the normal content of the surrounding soil up to a depth of 260 cm. On the other hand, the vegetation installed on sewage sludge in the process of mineralization, composed predominantly of Phragmites, Rumex, Chenopodium, and Aster species had accumulated in roots, stems and leaves Zn quantities equivalent to 1463 mg Kg-1, 3988 mg Kg-1, 1463 mg Kg-1, respectively, 1120 mg∙Kg-1. The plants in question represents the natural means of phytoremediation, and sewage sludge as such may constitute a fertilizer material for soils in the area, on which Zn deficiency in maize has been recorded. In addition, the ash resulted from the incineration of plants loaded with zinc may constitute, in its turn, a good material for fertilizing of the soils that are deficient in zinc.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baker A.J.M. Mc. Grath R.D. Reeves R.D. Smith J.A.C. 2000 Metal Hyperacumulator Plants: A Review of the Ecology and Physiology of a Biochemical Resource for Phytoremediation of Metal polluted Soils. Phytoremediation of Contaminated Soil and Water. Lewis Publ. Boca Raton FL. By Terry N and Banuelas G. (Ed.) 85-107.

  • Baker A.J.M. Brooks R.R. 1989 Terrestrial higher plants wich hyperaccumulate metalic elements. A review of their distribution ecology and phytochemistry Biorecovery 1 81-126.

  • Cho-Ruk K. Kurukate J. Supprung P. Vetayasuporn S. 2006 Perennial plants in the phytoremediation of lead-contaminated soils Biotechnology 5 1-4.

  • Dickinson N.M. Baker A.J.M. Doronila A. Laidlaw S. Reeves R.D. 2009 Phytoremediation of inorganics; realism and synergies International Journal of Phytoremediation 11 97-114.

  • Dornescu D. Pleșa D. Petrovici P. Dorneanu V. 1972 Influence of zinc on maise on Jijia-Bahlui Depression chernozem Analele ICCPT Fundulea seria B 231-245 (in Romanian)

  • Greger M. 1999 Metal availability and bioconcentration in plants in Heavy Metal Stress in Plants (Ed. Prasad M.N.V. and Hagemeyer J.) Springer Heidelberg.

  • Lăcătușu R. Rizea N. Lazăr R. Kovacsovics B. Matei M.G. Matei S. Lungu M. Preda M. Claciu I. 2005 Level II Environmental Balance and Risk Assessment required for the clearance of sludge storage Tomești ICPA Bucharest Archive (In Romanian).

  • Lăcătușu R. Lăcătușu A.-R. Stanciu-Burileanu M.M. Lazăr D.R. Lungu M. Rizea N. Catrina V. 2012 Phytoremediation of a sludge depozit proceeded from a city wastewater treatment plant Carpathian Journal of Earth and Environmental Sciences 7 1 71-79.

  • Marinciuc Irina Elena Catrina Virginia Lăcătușu R. Lazăr Rodica Topală Daniela 2010 Research regarding the phyto-rehabilitation of the sludge storage area from wastewater treatment plants An. Știin. Univ. “Al. I. Cuza” Iași Geologie Tomul LVI 2 75-81.

  • Malski D. Roman C. Miclean M. Șenilă M. Ștefănescu L. Malsch-Florian B. Bolonyi A. Ghira G. Brăhaița D. Cuhan A. 2013 Phytoextraction of heavy metals from industrially polluted zone using Lolium perenne and Lemna minor Environmental Engeneering and Management Journal 125 1103-1108

  • Park W. Ahn S.J. 2014 How do heavy metal ATPase contribute to hyperaccumulation? J. Plant Nutr. Soil Sci. 177 121-127.

  • Pollard A.J. Reeves R.D. Baker A.J.M. 2014 Facultative hyperracumulation of heavy metals and metalloids Plant Science 217-218 8-17.

  • Zhao F.J. Mc. Grath S.P. 2009 Biofortification and phytoremediation Curr. Opin. Plant Biol. 12 373-380.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 229 115 9
PDF Downloads 86 63 4