The Influence of Evapotranspiration and Wet Deposition on the Variations of PM10 Concentration in the Ciuc Basin

Open access

Abstract

Trend analysis for potential evapotranspiration (PET) and climatic water balance (CWB) is critical in identifying the particulate matter concentration (PM10) variations. The PET is computed based on the monthly average temperature for the Ciuc basin using Thornthwaite parameterization. The highest levels of evapotranspiration appear during the months of May and June. The lowest levels of particulate concentration characterize the period during April-June. Precipitation is highest during May and June. Particulate matter in the highest cloud water is 0.014 µg/m3/mm during April and 0.010 µg/m3/mm during May. One can observe a significant level of negative correlation between particulate matter concentration, the potential evapotranspiration and precipitation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Boga R. Korodi A. Keresztesi Á. Ghita G. Ilie M. Deák Gy. 2017:. Tropospheric ozone temporal variations and relationship to atmospheric oxidation in Ciuc basin. ECOTERRA - Journal of Environmental Research and Protection 14. 2. 44-51.

  • Brebbia C.A. Longhurst J.W.S. Popov V. 2011: Air pollution XIX. WIT transactions on ecology and the environment. WIT Press Southampton Boston.

  • Burkart J. Steiner G. Reischl G. Hitzenberger R. 2011: Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna. Atmos. Environ. 45 5751-5759. https://doi.org/10.1016/j.atmosenv.2011.07.022

  • Hoedjes J.C.B. Chehbouni A. Jacob F. Ezzahar J. Boulet G. 2008: Deriving daily evapotranspiration from remotely sensed instantaneous evaporative fraction over olive orchard in semi-arid Morocco. J. Hydrology 354 53-64. https://doi.org/10.1016/j.jhydrol.2008.02.016

  • Hui-Mean F. Yusop Z. Yusof F. 2017: Drought analysis and water resource availability using standardized precipitation evapotranspiration index. Atmospheric Res. 201 102-115. https://doi.org/10.1016/j.atmosres.2017.10.014

  • Junge C.E. 1963: Air Chemistry and Radioactivity. Academic Press New York and London.

  • Kajino M. Aikawa M. 2015: A model validation study of the washout/rainout contribution of sulfate and nitrate in wet deposition compared with precipitation chemistry data in Japan. Atmos. Environ. 117 124-134. https://doi.org/10.1016/j.atmosenv.2015.06.042

  • Keresztesi Á. Korodi A. Boga R. Petres S. Ghita G. Ilie M. 2017: Chemical characteristics of wet precipitation in the Eastern Carpathians Romania. ECOTERRA - J. Environ. Res. Prot. 14 52-59.

  • Keresztesi Á. Petres S. Ghita G. Dumitru F.D. Moncea M.A. Ozonu A. Szép R. 2018: Ammonium Neutralization Effect on Rainwater Chemistry in the Basins of the Eastern Carpathians – Romania. Rev. Chim. Bucharesti 69 57-63.

  • Korodi A. Petres S. Keresztesi Á. Szép R. 2017. Sustainable development. Theory or practice? in: International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management SGEM. doi:10.5593/sgem2017/54/S22.049

  • Kristó A. 1994: An environmental assessment of the Ciuc basin. Csíki Zöld Füzetek.

  • Langner M. Draheim T. Endlicher. W. 2011: Particulate Matter in the Urban Atmosphere: Concentration Distribution Reduction – Results of Studies in the Berlin Metropolitan Area. Perspectives in Urban Ecology. Springer Berlin Heidelberg Berlin Heidelberg.

  • Maryon H.R. Brtain G. 1996: Meteorological Office Norske meteorologiske institutt. An Intercomparison of Three Long Range Dispersion Models Developed for the UK Meteorological Office DNMI and EMEP. Meteorological Office Atmospheric Processes Division.

  • Mészáros E 1977: A levegőkémia alapjai. Akadémiai Kiadó Budapest.

  • Olszowski T. 2015: Concentration Changes of PM10 Under Liquid Precipitation Conditions. Ecol. Chem. Eng. S. 22 363-378. https://doi.org/10.1515/eces-2015-0019

  • Osada K. Ura S. Kagawa M. Mikami M. Tanaka T.Y Matoba S. Aoki K. Kurosaki Y. Hayashi M. Shimizu A. Uematsu M. 2014: Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution. Atmospheric Chem. Phys. 14 1107-1121. https://doi.org/10.5194/acp-14-1107-2014

  • Petres S. Korodi A. Keresztes R. Szép R. 2017: Tendencies and particularities in thermic inversion episodes in the Ciuc basin - Eastern Carpathians Romania. Sect. Appl. Environental Geophys. 17 445-452. doi: 10.5593/SGEM2017/14/S05.056

  • Petres S. Boga R. Korodi A. Keresztesi Á. Ghita G. Ilie M. Deák Gy. - Comparative study of air temperature evolution in the Ciuc depression -ECOTERRA - Journal of Environmental Research and Protection – vol. 14 2 2017 60-69.

  • Stănilă A.L. Parichi M. Vartolomei F. 2011: Pedological Resources of Romania. Scientific Papers UASVM Bucharest.

  • Szép R. Bodor Z. Miklóssy I. Niță I.A. Oprea O.A. Keresztesi Á. 2019: Influence of peat fires on the rainwater chemistry in intra-mountain basins with specific atmospheric circulations (Eastern Carpathians Romania). Sci. Total Environ. 647 275–289. doi:10.1016/j.scitotenv.2018.07.462

  • Szép R. Keresztes R. Constantin L. 2016: Multi-model assessment of tropospheric ozone pollution indices of risk to human health and crops and ozone deposition in Ciuc Depression – Romania. Rev. Chim. 67 1–6.

  • Szép R. Keresztes R. Deák D. Toba F. Ghipusian M. Craciun E.M. 2016a: The dry deposition of PM10 and PM2.5 to the vegetation and its health effect in the Ciuc basin. Rev. Chim. 67 639-644.

  • Szép R. Keresztes R. Korodi A. Tonk SZ. Craciun M.E. 2017b: Study of air pollution and atmospheric stability in Ciuc basin-Romania. Rev. Chim. Bucharesti 68 1763-1767.

  • Szép R. Keresztes R. Korodi A. Tonk SZ. Niculae A.G. Birloiu A.M. 2016b: Dew Point - indirect Particulate Matter Pollution Indicator in the Ciuc Basin – Harghita Romania. Rev. Chim. Bucharesti 67 1914-1921.

  • Szép R. Keresztes R. Tonk S. Korodi A. Craciun M.E. 2017a: The Examination of the Effects of Relative Humidity on the Changes of Tropospheric Ozone Concentrations in the Ciuc BasinRomania. Rev. Chim. 2–5.

  • Szép R. Mateescu E. Nechifor A.C. Keresztesi Á. 2017b: Chemical characteristics and source analysis on ionic composition of rainwater collected in the Carpathians “Cold Pole” Ciuc basin Eastern Carpathians Romania. Environ. Sci. Pollut. Res. 24 1–15. doi:10.1007/s11356-017-0318-2

  • Szép R. Mateescu E. Niță A. Bîrsan M. Zsolt B. Keresztesi Á. 2018: Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians Romania). Atmos. Res. 214 311–328. doi:10.1016/J.ATMOSRES.2018.08.009

  • Szép R. Mátyás L. 2014: The role of regional atmospheric stability in high-PM10 concentration episodes in Miercurea Ciuc (Harghita). Carpathian J. Earth Environ. Sci. 9 241-250.

  • Szép R. Mátyás L. Keresztes R. Ghimpusian M. 2016c: Tropospheric Ozone Concentrations - Seasonal and Daily Analysis and its Association with NO and NO2 as a Function of NOx in Ciuc Depression – Romania. Rev. Chim. 67 205-213.

  • Thomas D. Chavet A. 2017: An Introduction to Aerosols. Aerosol Filtration.

  • Thornthwaite C.W. 1948: An Approach toward a Rational Classification of Climate. Geogr. Rev. 38 55-94. doi: 10.2307/210739

  • Újvári I. 1972: Geografia apelor Romaniei. Stiintifica.

  • Yao L. 2017: Causative impact of air pollution on evapotranspiration in the North China Plain. Environ. Res. 158 436-442. https://doi.org/10.1016/j.envres.2017.07.007

  • Zhang L. Michelangeli D.V. Taylor P.A. 2004: Numerical studies of aerosol scavenging by low-level warm stratiform clouds and precipitation. Atmos. Environ. 38 4653-4665. https://doi.org/10.1016/j.atmosenv.2004.05.042

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 11
PDF Downloads 42 42 6