An Investigation of Direct Torque Control and Hysteresis Current Vector Control for Motion Control Synchronous Reluctance Motor Applications

Open access


Synchronous reluctance motor drives are one of the most attractive alternatives of permanent magnet synchronous motor drives and induction motor drives in the field of conventional industrial and household applications. This tendency is expected to be continued in the case of motion control applications as well. This article investigates two torque-control algorithms that are possible candidates for motion control synchronous reluctance motor applications. The examined torque-control algorithms are direct torque control (DTC) and hysteresis current vector control (HCVC).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Antonello R. Carraro M. Peretti L. and Zigliotto M. (2016). Hierarchical Scaled-States Direct Predictive Control of Synchronous Reluctance Motor Drives. IEEE Transactions on Industrial Electronics 63(8) pp. 5176–5185.

  • Bianchi N. Bolognani S. Carraro E. Castiello M. and Fornasiero E. (2016). Electric Vehicle Traction Based on Synchronous Reluctance Motors. IEEE Transactions on Industry Applications 52(6) pp. 4762–4769.

  • Buja G. S. and Kazmierkowski M. P. (2004). Direct Torque Control of PWM Inverter-Fed AC Motors — A Survey. IEEE Transactions on Industrial Electronics 51(4) pp. 744–757.

  • Grabowski P. Z. Kazmierkowski M. P. Bose B. K. and Blaabjerg F. (2000). A Simple Direct-Torque Neuro-Fuzzy Control of PWM-Inverter-Fed Induction Motor Drive. IEEE Transactions on Industrial Electronics 47(4) pp. 863–870.

  • Guagnano A. Rizzello G. Cupertino F. and Naso D. (2016). Robust Control of High-Speed Synchronous Reluctance Machines. IEEE Transactions on Industry Applications 52(5) pp. 3990–4000.

  • Hadla S. C. H. (2016). Active flux based finite control set model predictive control of synchronous reluctance motor drives. In: 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe) Karlsruhe (Germany) pp. 1–10.

  • Hinkkanen M. Asad A. A. H. Qu Z. Tuovinen T. and Briz F. (2016). Current Control for Synchronous Motor Drives: Direct Discrete-Time Pole-Placement Design. IEEE Transactions on Industry Applications 52(2) pp. 1530–1541.

  • Juhasz G. Halasz S. and Veszpremi K. (2000). New aspects of a direct torque controlled induction motor drive. In: Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482) Goa (India) pp. 43–48.

  • Ma X. Li G. Zhu Z. Jewell G. W. and Green J. (2018). Investigation on Synchronous Reluctance Machines with Different Rotor Topologies and Winding Configurations. IET Electric Power Applications 12(1) pp. 45–53.

  • Malinowski M. Kazmierkowski M. P. Hansen S. Blaabjerg F. and Marques G. D. (2001). Virtual-Flux-Based Direct Power Control of Three-Phase PWM Rectifiers. IEEE Transactions on Industry Applications 37(4) pp. 1019–1027.

  • Malinowski M. Kazmierkowski M. P. and Trzynadlowski A. M. (2003). A Comparative Study of Control Techniques for PWM Rectifiers in AC Adjustable Speed Drives. IEEE Transactions on Power Electronics 18(6) pp. 1390–1396.

  • Mishra T. Devanshu A. Kumar N. and Kulkarni A. R. (2016). Comparative analysis of Hysteresis Current Control and SVPWM on Fuzzy Logic based vector controlled Induction Motor Drive. In: 2016 IEEE 1st International Conference on Power Electronics Intelligent Control and Energy Systems (ICPEICES) Delhi (India) pp. 1–6.

  • Nardo M. D. Calzo G. L. Galea M. and Gerada C. (2018). Design Optimization of a High-Speed Synchronous Reluctance Machine. IEEE Transactions on Industry Applications 54(1) pp. 233–243.

  • Orłowska-Kowalska T. and Dybkowski M. (2016). Industrial Drive Systems. Current State and Development Trends. Power Electronics and Drives 36(1) pp. 5–25.

  • Purohit P. and Dubey M. (2014). Analysis and design of hysteresis current controlled multilevel inverter fed PMSM drive. In: 2014 IEEE Students’ Conference on Electrical Electronics and Computer Science Bhopal pp. 1–5.

  • Schmidt I. and Veszpremi K. (2005). Application of direct controls to variable-speed wind generators. In: 2005 International Conference on Industrial Electronics and Control Applications Quito (Ecuador) pp. 1–6.

  • Staudt S. Stock A. Kowalski T. Teigelkötter J. and Lang K. (2015). Raw data based model and high dynamic control concept for traction drives powered by synchronous reluctance machines. In: 2015 IEEE Workshop on Electrical Machines Design Control and Diagnosis (WEMDCD) Torino (Italy) pp. 204–209.

  • Schmidt I. Vincze K. Veszpremi K. and Seller B. (2001). Adaptive Hyste-resis Current Vector Control of Synchronous Servo Drives With Different Tolerance Areas. Periodica Polytechnica Electrical Engineering 45(3–4) pp. 211–222.

  • Vajsz T. Számel L. and Rácz G. (2017). A Novel Modified DTC-SVM Method with Better Overload-Capability for Permanent Magnet Synchronous Motor Servo Drives. Periodica Polytechnica Electrical Engineering and Computer Science 61(3) pp. 253–263.

  • Veszpremi K. and Schmidt I. (2008). Direct controls in voltage-source converters — Generalizations and deep study. In: 2008 13th International Power Electronics and Motion Control Conference Poznan (Poland) pp. 1803–1810.

  • Zhang X. and Foo G. H. B. (2016). A Robust Field-Weakening Algorithm Based on Duty Ratio Regulation for Direct Torque Controlled Synchronous Reluctance Motor. IEEE/ASME Transactions on Mechatronics 21(2) pp. 765–773.

  • Zhang X. Foo G. H. B. Vilathgamuwa D. M. and Maskell D. L. (2015). An Improved Robust Field-Weakening Algorithm for Direct-Torque-Controlled Synchronous-Reluctance-Motor Drives. IEEE Transactions on Industrial Electronics 62(5) pp. 3255–3264.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 6
PDF Downloads 70 70 4