Safe choice of structural steels in a region of ultra-high number of load cycles

Open access

Abstract

In this paper the authors introduce their own selected experimental results in the field of the investigation of fatigue resistance of structural steels. The experiments were carried out on the nine structural steels including high strength steels, DOMEX 700MC, HARDOX 400, HARDOX 450, 100Cr6 (UTS from 446 MPa to 2462 MPa) at high-frequency cyclic loading (f = 20 kHz, T = 20 ± 5 °C, R = -1) in the region of number cycles ranged from N ≈ 2×106 to N ≈ 2×109 cycles of loading. The continuous decrease of fatigue strength in dependence on the number of loading cycles was observed with the average value of ratio σa2×109/σa2×106 = 0.69.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bathias C. 1999. There is no infinite fatigue life in metallic materials Fatigue Fract. Eng. Mater Struct 22(7) 559-565.

  • Bathias C. Paris P.C. 2004. Gigacycle Fatigue in Mechanical Practice CRC Press.

  • Bathias C. 2006. Piezoelectric fatigue testing machines and devices Int. J. Fatigue 28 1438–1445.

  • Bokůvka O. Nicoletto G. Kunz L. Palcek P. Chalupová M. 2002. Low and High Frequency Fatigue Testing EDIS ŽU Žilina.

  • Bokůvka O. Nicoletto G. Kunz L. Nový F. Chalupová M. 2014. Fatigue of Materials at Low and High Frequency Loading EDIS ŽU Žilina.

  • Chapetti M.D. 2010. Prediction of threshold for very high cycle fatigue (N >107 cycles). Procedia Eng. 2 257–264. https://doi.org/10.1016/j.proeng.2010.03.028

  • Höppel H.W. Prell M. May L. Göken M. 2010. Influence of grain size and precipitates on the fatigue lives and deformation mechanisms in the VHCF-regime Procedia Engineering 1025–1034. https://doi.org/10.1016/j.proeng.2010.03.111

  • Kazymyrovych V. 2009. Very High Cycle Fatigue of Engineering Materials (a literature review) Faculty of Technology and Science Materials Engineering Karlstads universitet.

  • Nový F. Bokůvka Trško L. Chalupová M. 2012. Ultrahighcyclefatigueofmaterials Annals of Faculty Engineering Hunedoara International Journal of Engineering 10(2) 231-234.

  • Ritchie R.O. 1981. Application of Fracture Mechanics to Fatigue Crack Propagation University of California.

  • Stanzl-Tsechegg S.E. 1999. Fracture mechanism and fracture mechanism at ultrasonic frequencies Fatigue Fract. Eng. Mater Struct. 22(7) 567-579.

  • Szataniak P. 2015. Fatigue Properties of Fine-grained Steels PhD. Thesis ŽU Žilina.

  • Trško L. Nový F. Bokůvka O. Jambor M. 2018. Ultrasonic Fatigue Testing in the Tension-Compression Mode. J. Vis. Exp. (133) e57007 doi:10.3791/57007 (2018).

  • Ulewicz R. Mazur M. 2013. Fatigue testing structural steel as a factor of safety of technical facilities maintenance. Prod. Eng. Arch. 1/1 32–34. https://doi.org/10.30657/pea.2013.01.10

  • Ulewicz R. Szataniak P. Novy F. 2014. Fatigue properties of wear resistant martensitic steel in: METAL 2014 - 23rd International Conference on Metallurgy and Materials Conference Proceedings. pp. 784–789.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 5
PDF Downloads 8 7 2