Electric aircraft - present and future


In this paper, an outlook about the present of electrical aviation is given. The relatively small energy density of current battery technologies is adequate to build usable electric car, but not suitable for electric aircraft. Because of the very limited amount of energy available on-board, a couple of percent in efficiency can give significant increase in range and flight time, hence the development of more efficient propulsion system and E-motor is as important as the development of battery technologies. Current research results at the University of Dunaujvaros show, that building E-motors from amorphous materials is possible, and can easily increase the efficiency of high speed E-motors.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andwari, A. Mahmoudzadeh, a. Pesiridis, s. Rajoo, r. Martinez-botas, v. Esfahanian, 2017. A review of Battery Electric Vehicle technology and readiness levels, Renewable and Sustainable Energy Reviews, 78, 414-430, doi: 10.1016/j.rser.2017.03.138

  • Bicsak, Gy, 2017. Hibrid hajtáslánccal rendelkező pilótanélküli teherszállító légépjármű követelményrendszerének felépítése, Repüléstudományi Közlemények XXIX.

  • Borer, Nicholas K., Michael D. Patterson, et.al., 2016. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator, 16th AIAA Aviation Technology, Integration, and Operations Conference, doi: 10.2514/6.2016-3920

  • Colella, NJ., et.al. 1996. Pathfinder. Developing a solar rechargeable aircraft, IEEE Potentials, 15(1).

  • Colonno, M, J.J. Alonso, 2014. Sustainable Air Travel for a Carbon-Free Future, Stanford Energy Journal, 4.

  • Deere, K.A., et.al. 2017. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft, AIAA 2017-3923, https://doi.org/10.2514/6.2017-3923

  • Falck, Robert D., Jeffrey Chin, et.al, 2017. Trajectory optimization of electric aircraft subject to subsystem thermal constraints, AIAA 2017-4002, https://doi.org/10.2514/6.2017-4002

  • Gadalla, M., Zafar, S., 2016. Analysis of a hydrogen fuel cell-PV power system for small UAV, International Journal of Hydrogen Energy, 41(15), 6422-6432, https://doi.org/10.1016/j.ijhydene.2016.02.129

  • Geetha, A., Subramani, C., 2017. A comprehensive review on energy management strategies of hybrid energy storage system for electric vehicles, Int. J. Energy Res., 41, 1817-1834, doi: 10.1002/er.3730.

  • Guida, D., M.Minutillo, 2016. Design methodology for a pem fuel cell power system in a more electrical aircraft, Applied Energy, 192(15), 446-456, https://doi.org/10.1016/j.apenergy.2016.10.090

  • Gur, et.al, 2009. Optimizing Electric Propulsion Systems for Unmanned Aerial Vehicles, Journal of Aircraft, 46(4), 1340-1353, https://doi.org/10.2514/1.41027

  • Hepperle, Martin, 2012. Electric Flight – Potential and Limitations, German Aerospace Center, Institute of Aerodynamics and Flow Technology, STO-MP-AVT-209

  • Hoelzen, J., Liu, y., et al., 2018. Conceptual Design of Operation Strategies for Hybrid Electric Aircraft, Energies, 11, 217, doi:10.3390/en11010217

  • Hong, DK., et al. 2013. Development of an ultra high speed permanent magnet synchronous motor, Int. J. Precis. Eng. Manuf., 14, 493, https://doi.org/10.1007/s12541-013-0066-2

  • Krings, A., a. Boglietti, a. Cavagnino and s. Sprague, 2017. Soft Magnetic Material Status and Trends in Electric Machines, IEEE Transactions on Industrial Electronics, 64(3), 2405-2414, doi:10.1109/TIE.2016.2613844

  • Koehler, Tom, 2008: Boeing makes history with flights of Fuel Cell Demonstrator Airplane, Boeing Frontiers.

  • Koti, D., Szabo, A., Cziraki, A. Nagy, A., 2018. The Study of The Local Degradation of Amorphous Glassy Tapes During Laser Cutting.

  • Kouchachvili, L., Yaici, W., Entchev, E., 2018: Hybrid battery/supercapacitor energy storage system for the electric vehicles, Journal of Power Sources, 374, 237-248, https://doi.org/10.1016/j.jpowsour.2017.11.040

  • Liu, L., f. Kong, x. Liu, Yu Peng, Q. Wang, 2015. A review on electric vehicles interacting with renewable energy in smart grid, Renewable and Sustainable Energy Reviews, 51, 648-661, https://doi.org/10.1016/j.rser.2015

  • Nagy, A., et.al, 2012. Unmanned measurement platform for paragliders. Proceedings of the 28th International Congress of the Aeronautical Sciences, http://icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/832.PDF

  • Nagy, A. et.al, 2018. Advanced Data Acquisition System for Wind Energy Applications, Periodica Polytechnica Transportation Engineering, 47(2), 124-130. doi: https://doi.org/10.3311/PPtr.11515.

  • Noll, Thomas E. et.al. 2007. Technical Findings, Lessons Learned, and Recommendations Resulting from the Helios Prototype Vehicle Mishap, National Aeronautics and Space Admin Langley Research Center Hampton Va.

  • Pandaya, A., Hari Om Bansal, 2016. Energy management strategy for hybrid electric vehicles using genetic algorithm, Journal of Renewable and Sustainable Energy, 8, 01570, https://doi.org/10.1063/1.4938552

  • Pourabedin, G., Ommi, F., 2019. Modeling and Performance Evaluation of standalone Solid Oxide Fuel Cell for Aircraft APUII: Dynamic Performance, International Journal of Smart Grid, 3(1).

  • Schulz, E, 2019. Global Networks, Global Citizens, Global Market Forecast 2018-2037, Airbus, https://www.airbus.com/aircraft/market/global-market-forecast.html

  • Wang T. et al., 2011. Vibration analysis of shafting of high speed permenant magnetic machinery, Journal of Vibration and Shock, 2011-09

  • Widmer, James D., Richard Martin, Mohammed Kimiabeigi, 2015. Electric vehicle traction motors without rare earth magnets, Sustainable Materials and Technologies, https://doi.org/10.1016/j.susmat.2015.02.001

  • Wilson, Lindsay, 2013. Shades of Green: Electric Cars’ Carbon Emissions Around the Globe, http://shrinkthatfootprint.com/electric-car-emissions


Journal + Issues