Electric aircraft - present and future

Open access

Abstract

In this paper, an outlook about the present of electrical aviation is given. The relatively small energy density of current battery technologies is adequate to build usable electric car, but not suitable for electric aircraft. Because of the very limited amount of energy available on-board, a couple of percent in efficiency can give significant increase in range and flight time, hence the development of more efficient propulsion system and E-motor is as important as the development of battery technologies. Current research results at the University of Dunaujvaros show, that building E-motors from amorphous materials is possible, and can easily increase the efficiency of high speed E-motors.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andwari A. Mahmoudzadeh a. Pesiridis s. Rajoo r. Martinez-botas v. Esfahanian 2017. A review of Battery Electric Vehicle technology and readiness levels Renewable and Sustainable Energy Reviews 78 414-430 doi: 10.1016/j.rser.2017.03.138

  • Bicsak Gy 2017. Hibrid hajtáslánccal rendelkező pilótanélküli teherszállító légépjármű követelményrendszerének felépítése Repüléstudományi Közlemények XXIX.

  • Borer Nicholas K. Michael D. Patterson et.al. 2016. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator 16th AIAA Aviation Technology Integration and Operations Conference doi: 10.2514/6.2016-3920

  • Colella NJ. et.al. 1996. Pathfinder. Developing a solar rechargeable aircraft IEEE Potentials 15(1).

  • Colonno M J.J. Alonso 2014. Sustainable Air Travel for a Carbon-Free Future Stanford Energy Journal 4.

  • Deere K.A. et.al. 2017. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft AIAA 2017-3923 https://doi.org/10.2514/6.2017-3923

  • Falck Robert D. Jeffrey Chin et.al 2017. Trajectory optimization of electric aircraft subject to subsystem thermal constraints AIAA 2017-4002 https://doi.org/10.2514/6.2017-4002

  • Gadalla M. Zafar S. 2016. Analysis of a hydrogen fuel cell-PV power system for small UAV International Journal of Hydrogen Energy 41(15) 6422-6432 https://doi.org/10.1016/j.ijhydene.2016.02.129

  • Geetha A. Subramani C. 2017. A comprehensive review on energy management strategies of hybrid energy storage system for electric vehicles Int. J. Energy Res. 41 1817-1834 doi: 10.1002/er.3730.

  • Guida D. M.Minutillo 2016. Design methodology for a pem fuel cell power system in a more electrical aircraft Applied Energy 192(15) 446-456 https://doi.org/10.1016/j.apenergy.2016.10.090

  • Gur et.al 2009. Optimizing Electric Propulsion Systems for Unmanned Aerial Vehicles Journal of Aircraft 46(4) 1340-1353 https://doi.org/10.2514/1.41027

  • Hepperle Martin 2012. Electric Flight – Potential and Limitations German Aerospace Center Institute of Aerodynamics and Flow Technology STO-MP-AVT-209

  • Hoelzen J. Liu y. et al. 2018. Conceptual Design of Operation Strategies for Hybrid Electric Aircraft Energies 11 217 doi:10.3390/en11010217

  • Hong DK. et al. 2013. Development of an ultra high speed permanent magnet synchronous motor Int. J. Precis. Eng. Manuf. 14 493 https://doi.org/10.1007/s12541-013-0066-2

  • Krings A. a. Boglietti a. Cavagnino and s. Sprague 2017. Soft Magnetic Material Status and Trends in Electric Machines IEEE Transactions on Industrial Electronics 64(3) 2405-2414 doi:10.1109/TIE.2016.2613844

  • Koehler Tom 2008: Boeing makes history with flights of Fuel Cell Demonstrator Airplane Boeing Frontiers.

  • Koti D. Szabo A. Cziraki A. Nagy A. 2018. The Study of The Local Degradation of Amorphous Glassy Tapes During Laser Cutting.

  • Kouchachvili L. Yaici W. Entchev E. 2018: Hybrid battery/supercapacitor energy storage system for the electric vehicles Journal of Power Sources 374 237-248 https://doi.org/10.1016/j.jpowsour.2017.11.040

  • Liu L. f. Kong x. Liu Yu Peng Q. Wang 2015. A review on electric vehicles interacting with renewable energy in smart grid Renewable and Sustainable Energy Reviews 51 648-661 https://doi.org/10.1016/j.rser.2015

  • Nagy A. et.al 2012. Unmanned measurement platform for paragliders. Proceedings of the 28th International Congress of the Aeronautical Sciences http://icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/832.PDF

  • Nagy A. et.al 2018. Advanced Data Acquisition System for Wind Energy Applications Periodica Polytechnica Transportation Engineering 47(2) 124-130. doi: https://doi.org/10.3311/PPtr.11515.

  • Noll Thomas E. et.al. 2007. Technical Findings Lessons Learned and Recommendations Resulting from the Helios Prototype Vehicle Mishap National Aeronautics and Space Admin Langley Research Center Hampton Va.

  • Pandaya A. Hari Om Bansal 2016. Energy management strategy for hybrid electric vehicles using genetic algorithm Journal of Renewable and Sustainable Energy 8 01570 https://doi.org/10.1063/1.4938552

  • Pourabedin G. Ommi F. 2019. Modeling and Performance Evaluation of standalone Solid Oxide Fuel Cell for Aircraft APUII: Dynamic Performance International Journal of Smart Grid 3(1).

  • Schulz E 2019. Global Networks Global Citizens Global Market Forecast 2018-2037 Airbus https://www.airbus.com/aircraft/market/global-market-forecast.html

  • Wang T. et al. 2011. Vibration analysis of shafting of high speed permenant magnetic machinery Journal of Vibration and Shock 2011-09

  • Widmer James D. Richard Martin Mohammed Kimiabeigi 2015. Electric vehicle traction motors without rare earth magnets Sustainable Materials and Technologies https://doi.org/10.1016/j.susmat.2015.02.001

  • Wilson Lindsay 2013. Shades of Green: Electric Cars’ Carbon Emissions Around the Globehttp://shrinkthatfootprint.com/electric-car-emissions

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 16
PDF Downloads 195 195 56