An offline path planning method for autonomous vehicles

Open access

Abstract

Driving a road vehicle is a very complex task in terms of controlling it, substituting a human driver with a computer is a real challenge also from the technical side. An important step in vehicle controlling is when the vehicle plans its own trajectory. The input of the trajectory planning are the purpose of the passengers and the environment of the vehicle. The trajectory planning process has several parts, for instance, the geometry of the path-curve or the speed during the way. Furthermore, a traffic situation can also determine many other parameters in the planning process.

This paper presents a basic approach for trajectory design. To reach the aim a map will be given as a binary 2204 x 1294 size matrix where the roads will be defined by ones, the obstacles will be defined by zeros. The aim is to make an algorithm which can find the shortest and a suitable way for vehicles between the start and the target point. The vehicle speed will be slow enough to ignore the dynamical properties of the vehicle. The research is one of the first steps to realize automated parking features in a self-drive car.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Chebly A. Tagne G. Talj R. Charara A. 2015. Local Trajectory Planning and Tracking For Autonomous Vehicle Navigation Using Clothoid Tentacles Method HAL Id: hal-01139316.

  • Dijkstra E. W. 1959. A note on two problems in connexion with graps Numerische Mathematik 1 269-271.

  • Dolgov D. Thrun S. Montemerlo M. Diebel J. 2010. Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments The International Journal of Robotics Research Vol. 29 No. 5 485-501.

  • Gáspár P. Szalay Zs. Aradi Sz. 2014. Highly Automated Vehicle Systems BME MOGI Retrieved May 10 2018 from http://www.mogi.bme.hu/TAMOP/jarmurendszerek_iranyitasa_angol/index.html

  • Gu T. Snider J. Dolan J.M. Lee J. 2013. Focused Trajectory Planning for Autonomous On-Road Driving. IEEE Intelligent Vehicles Symposium (IV) June 23-26 Gold Coast Australia.

  • Hult R. Tabar R. S. 2013 Path Planning for Highly Automated Vehicles Master’s Thesis in Systems Control and Mechatronics Gothenburg Sweden.

  • ISO 2011 “International standard road vehicles - functional safety” International Organization for Standardization Geneva Switzerland ISO26262.

  • Mathworks 2015. Graph and Network Algorithms Toolbox: User’s Guide (R2015b) Retrieved May 10 2018 from www.mathworks.com/help/pdf_doc/

  • Nyerges Á. Szalay Zs. 2017. A new approach for the testing and validation of connected and automated vehicles 34th International Colloquium on Advanced Manufacturing and Repairing technologies in Vehicle Industry 17-19 May Visegrád Hungary.

  • Sae International 2014. Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems SAE standard nr. J3016__201401 Retrieved May 10 2018 from http://standards.sae.org/j3016_20140

  • Szalay Zs. 2016. Structure and Architecture Problems of Autonomous Road Vehicle Testing and Validation. 15th Mini Conference on Vehicle System Dynamics Identification and Anomalies – VSDIA 11th November Budapest Hungary.

  • SZalay Zs. Nyerges Á. Hamar Z. Hesz M. 2017. Technical Specification Methodology for an Automotive Proving Ground Dedicated to Connected and Automated Vehicles Periodica Polytechnica Transportation Engineering Hungary 45(3) 168-174.

  • Tettamanti T. Varga I. Szalay Zs. 2016. Impacts of Autonomous Cars from a Traffic Engineering Perspective Periodica Polytechnica Transportation Engineering Hungary 44(4) 244-250.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 134 124 8
PDF Downloads 92 86 5