An Outline of Cardiogenesis

Open access


The paper presents a description of the development of the human heart based on the present state of knowledge cytogenetics and molecular genetics. Despite the complexity of the genetic mechanisms described, the authors emphasize that it may be just a slice patterns in kardiogenezie. Aberrations and mutations lead to the formation of congenital heart defects in both isolated and components of genetic syndromes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Optiz JM Yost J Clark FB. Overview: syndromes developmental fields and human cardiovascular morphogenesis of conge heart disease: twenty years progress in genetics and developmental biology. New York: Futura Publishing; 2000. O

  • 2. Lin AE Pierpont ME (guest editors). Seminars in medical genetic aspects of cardiovascular malformations. Am J Med Genet 2000;97(4):235.O

  • 3. Gilbert-Barness E Debich-Spicer D. Embryo and fetal pathology an atlas with ultrasound correlation Ch. 16. Cambridge: Cambridge University Press; 2004.O.

  • 4. Hutson MR Kirby ML (2003). Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res C Embryo Today 69:2-13

  • 5. Copel JA Cullen M Green JJ et al. The frequency of aneuploidy in prenatally diagnosed congenital heart disease: an indication for fetal karyotyping. Am J Obstet Gynecol 1988; 158:409.

  • 6. Srivastava D (2006). Making or breaking the heart: from lineage determination to morphogenesis. Cell 126: 1037-1048.

  • 7. Lindsay EA Vitelli F Su H Morishima M Huynh T Pramparo T Jurecic V Ogunrinu G Sutherland HF Scambler PJ et al. (2001). Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97-101.

  • 8. Merscher S Funke B Epstein JA Heyer J Puech A Lu MM Xavier RJ Demay MB Russell RG Factor S et al. (2001). TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104: 619-629.

  • 9. Mori AD Bruneau BG (2004). TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol 19: 211-215.

  • 10. Cai CL Liang X Shi Y Chu PH Pfaff SL Chen J Evans S (2003). Isll identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5: 877-889.

  • 11. Chein KR Olson EN (2002). Converging pathways and principles in heart development and disease: CV@CSH. Cell 100:153-162.

  • 12. Galvin KM Donovan MJ Lynch CA Meyer RI Paul RJ Lorenz JN Fairchild-Hunterss V Dixon KL Dunmore JH Gimbrone MA Jr et al. (2000). A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24: 171-174.

  • 13. Garratt AN Ozcelik C Birchmeier C (2003). ErbB2 pathways in heart and neural iseases. Trends Cardiovasc Med 13:80-86.

  • 14. Hu T Yamagishi H Maeda J McAnally J Yamagishi C Srivastava D (2004). Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131: 5491-5502.

  • 15. Piedra ME Icardo JM Albajar M Rodriguez-Rey JC Ros MA (1998). Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94: 319-324.

  • 16. Casey B. Genetics Of human situs abnormalities. Am J Med Genet 2001; 1001 (4):356.

  • 17. Casey B. Two rights make a wrong: human left-right malformations. Hum Mol Genet 1998; 7(10):1565.

  • 18. Biben C Harvey RP (1997). Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 11:1357-1369.

  • 19. Franco D Campione M (2003). The role of Pitx2 during cardiac development. Linkig lift-right signaling and congenital heart diseases. Trends Cardiovasc Med 13: 157-163.

  • 20. Kathiriya IS Srivastava D (2000). Left-right asymmetry and cardiac looping:implications for cardiac development and congenital heart disease Am J Med Genet 97:271-279.

  • 21. Moorman AF Christoffels VM (2003). Cardiac chamber formation: development genesand evolution. Physiol Rev 83: 1223-1267.

  • 22. Costantini DL Arruda EP Agarwal P Kim K-H Zhu Y Leebel M. Cheng CW Park CY Pierce S Guerchicoff A et al. (2005). The homeodomain transcription factor Irx5 estblishes the mouse cardiac ventricular repolarization gradient. Cell 123: 347-358.

  • 23. Crotti L. Tester DJ White WM et al. (2013).Long Qt syndromeassociated mutations in intrauterine fetal death. JAMA;309(14);1473-82.

  • 24. Crotti L Cefano G Dagradi F Schwartz PJ. (2008). Congenital long QT syndrome. Orphanet J Rare Dis. 3:18. Doi:101186/1750-1172-3-18.

  • 25. Garg V Kathiriya IS Barnes R Schluterman MK King IN Butler Ca Rothrock CR Eapen RS Hirayama-Yamada K Joo K et al. (2003). GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424: 443-447.

  • 26. Christoffels VM Mommersteeg MT Trowe MO Prall OW de Gier-deVries C Soufan AT Bussen M Schuster-Gossler K Harvey RP Moorman AF et al. (2006). Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98: 1555-1563.

  • 27. Grag V Muth AN Ransom JF Schluterman MK Barnes R King IN Grossfeld PD Srivastava D (2005). Mutations in NOTCH1 cause aortic valve disease. Nature 437:270-274.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 175 62 0
PDF Downloads 62 21 1