Sixty years of project planning: history and future

Open access


Modern project management owes its reputation to the development of modern scheduling techniques based on the theory of graphs, namely, network scheduling techniques. In 2017, these techniques are celebrating their 60th birthday. This anniversary provides the opportunity to look back at the most important achievements such as non-linear activities and new precedence relations, as well as to take a look into the future. The highlights of this subjective retrospective are the presentation of the latest results and the compilation of those problems that will probably define the priorities for future research. This paper is the extended version of the keynote lecture/ presentation that has been presented at the PBE 2016 Conference (People, Buildings and Environment, Luhačovice, Czech Republic) (Hajdu 2016a).


  • Adlakha, V. G. (1989). A classified bibliography of research on stochastic PERT networks: 1966-1987. Information Systems and Operational Research, 27(3), pp. 272-296.

  • Clark, C. E. (1961). The greatest of a finite set of random variables. Operations Research, 9, pp. 145-162.

  • Clark, C. E. (1962). The PERT model for the distribution of an activity time. Operations Research, 10, pp. 405-406.

  • Crandall, K., & Hajdu, M. (1994). A CPM költségtervezési feladat “legrosszabb” megoldása. Közlekedéstudományi szemle, 44(5), pp. 173-176. (In Hungrian).

  • Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University Press, Princeton, NJ.

  • de Leon, G. P. (2008). Graphical Planning method. In: PMICOS Annual Conference, Chicago, IL.

  • Dinic, E. A. (1990). The fastest algorithm for the PERT problem with AND- and OR-nodes (the new product-new technology problem). In: Kannan, R., & Pulleyblank, W. R. (eds.). Proceedings of the International Conference on Integer Programming and Combinatorial Optimization. University of Waterloo Press, Waterloo, ON, Canada, pp. 185-187.

  • Dodin, B. M. (1985a). Bounding the project completion time distribution in PERT networks. Operations Research, 33, pp. 862-881.

  • Dodin, B. M. (1985b). Approximating the distribution functions in stochastic networks. Computers & Operations Research, 12(3), pp. 251-264.

  • Elmaghraby, S. E. (1989). The estimation of some network parameters in PERT model of activity networks: Review and critique. In: Slowinski, R., & Weglarz J. (eds.). Advances in Project Scheduling. Elsevier, Amsterdam, pp. 371-432.

  • Farnum, N. R., & Stanton, L. W. (1987). Some results concerning the estimation of beta distribution parameters in PERT. Journal of the Operations Research Society, 38, pp. 287-290.

  • Fondahl, J. W. (1961). A Non-Computer Approach to the Critical Path Method for the Construction Industry, Technical Report #9. Department of Civil Engineering, Stanford University, Stanford, CA.

  • Fondahl, J. W. (1987). The history of modern project management: Precedence diagramming method: Origins and early developments. Project Management Journal, 18(2), pp. 33-36.

  • Francis, A., & Miresco, E. T. (2000). Decision support for project management using a chronographic approach. In: Proceedings of the 2nd International Conference on Decision Making in Urban and Civil Engineering Grand Hôtel Mercure Saxe-Lafayette, 20-22 November 2000, Lyon, France, pp. 845-856. Published jointly by INSA-Lyon, ESIGEC Chambery, ENTPE-Lyon and ETS Canada. [ISBN 2868341179].

  • Francis, A., & Miresco, E. T. (2002). Decision support for project management using a chronographic approach. Journal of Decision Systems, 11(3-4), pp. 383-404.

  • Fulkerson, D. R. (1961). A network flow computation for project cost curves. Management Science, 7(2), pp. 167-178.

  • Gillies, D. W. (1993). Algorithms to schedule tasks with AND/ OR precedence constraints. PhD thesis, Department of Computer Science, University of Illinois at Urbana- Champaign, Urbana, IL.

  • Hahn, E. D. (2008). Mixture densities for project management activity times: A robust approach to PERT. European Journal of Operational Research, 188, pp. 450-459.

  • Hajdu, M. (1993). An algorithm for solving the cost optimization problem in precedence diagramming. Periodica Politechnica Civil Engineering, 37(3), pp. 231-247.

  • Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management. Kluwer Academic Publishers, Dordrecht, London, New York. 352 p. [ISBN:0-7923-4309-3].

  • Hajdu, M. (2013). Effects of the application of activity calendars in PERT networks. Automation in Construction, 35, pp. 397-404.

  • Hajdu, M. (2015a). One relation to rule them all: The point-to-point precedence relation that substitutes the existing ones. In: Froese, T. M., Newton, L., Sadeghpour, F., & Vanier, D. J. (eds.). Proceedings of ICSC15: The Canadian Society for Civil Engineering 5th International/11th Construction Specialty Conference. 7-10 June. University of British Columbia, Vancouver, BC, Canada. doi:

  • Hajdu, M. (2015b). History and some latest development of precedence diagramming method. Organization, Technology and Management in Construction: An International Journal, 7(2), pp. 1302-1314. doi:

  • Hajdu, M. (2015c). Continuous precedence relations for better modelling overlapping activities. Procedia Engineering, 123, pp. 216-223. doi:

  • Hajdu, M. (2015d). Precedence diagramming method: Some latest developments. In: Keynote Presentation on the Creative Construction Conference, 21-24 June, 2015. Krakow, Poland.

  • Hajdu, M. (2016a). Sixty years of project planning: History and future. In: Conference Proceedings of People, Buildings and Environment 2016, An International Scientific Conference, Luhačovice, Czech Republic, pp. 230-242. Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic [ISSN: 1805-6784].

  • Hajdu, M. (2016b). PDM time analysis with continuous and point-to-point relations: Calculations using an artificial example. Procedia Engineering, 164, pp. 57-67. doi:

  • Hindealng, T. J., & Muth, J. F. (1979). A dynamic programming algorithm for decision CPM networks. Operations Research, 27(2), pp. 225-241.

  • IBM. (1964). Users’ Manual for IBM 1440 Project Control System (PCS).

  • Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis. Journal of the Royal Statistical Society: Series D (The Statistician), 46, pp. 387-398. doi:

  • Kamburowski, J. (1992). Bounding the distribution of project duration in PERT networks. Operations Research Letters, 12(1), pp. 17-22.

  • Kamburowski, J. (1997). New validations of PERT times. Omega, 25(3), pp. 323-328.

  • Keefer, D. L., & Bodily, S. E. (1983). Three-point approximations for continuous random variables. Management Science, 29(5), pp. 595-609.

  • Kelley, J. E. (1961). Critical path planning and scheduling: Mathematical basis. Operations Research, 9(3), pp. 296-320.

  • Kelley, J. E. (1989). The origins of CPM: A personal history. PM Network, III(2) PMI: USA.

  • Kelley, J. E., & Walker, M. E. (1959). Critical path planning and scheduling. In: Proceedings of the Eastern Joint Computer Conference, 1-3 December 1959 Boston, MA, pp. 160-173.

  • Kim, S. (2010). Advanced Networking Technique. Kimoondang, South Korea.

  • Kim, S. (2012). CPM schedule summarizing function of the beeline diagramming method. Journal of Asian Architecture and Building Engineering, 11(2), pp. 367-374.

  • Klafszky, E. (1969). Hálózati folyamok (Network Flows). Bolyai Jáns Mathematical Society Akadémiai Kiadó, Budapest.

  • Kotiah, T. C. T., & Wallace, N. D. (1973). Another look at the PERT asssumptions. Management Science, 20(3-4), pp. 44-49.

  • Krishnamoorty, M. S., & Deon, N. (1979). Complexity of minimum-dummy-activities problem in a PERT Network. Networks, 9. pp. 189-194.

  • Lucko, G. (2009). Productivity Scheduling Method: Linear schedule analysis with singularity functions. Journal of Construction Engineering and Management, 135(4), pp. 246-253.

  • Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar W. (1959). Application of a technique for a research and development program evaluation. Operations Research, 7, pp. 646-669.

  • Malyusz, L., & Hajdu, M. (2009). How would you like it? Shorter or cheaper? Organization Technology and Management in Construction, 1(2), pp. 59-63.

  • Massay, R. S. (1963). Program evaluation review technique: Its origins and development. Master’s thesis, The American University, Washington, DC.

  • Meyer, W. L., & Shaffer, L. R. (1963). Extension of the Critical Path Method Through the Application of Integer Programming, Technical Report. Department of Civil Engineering, University of Illinois, Urbana, IL.

  • Mohan, S., Gopalakrishnan, M., Balasubramanian, H., & Chandrashekar, A. (2007). A lognormal approximation of activity duration in PERT using two time estimates. Journal of the Operational Research Society, 58, pp. 827-831.

  • Möhring, R. H., Skutella, M., & Stork, F. (2004). Scheduling with and/or precedence constraints. SIAM Journal on Computing, 33(2), pp. 393-415.

  • Plotnick, FL. (2004). Introduction to modified sequence logic. In: Conference Proceedings, PMICOS Conference, April 25, 2004, Montreal, QC.

  • Premachandra, I. M., & Gonzales, L. (1996). A simulation model solved the problem of scheduling drilling rigs at Clyde dam. Interfaces, 26(2), pp. 80-91.

  • Roy, G. B. (1959), Théorie des Graphes: Contribution de la théorie des graphes á l1 étude de certains problémes linéaries. In: Comptes rendus des Séances de l1 Acedémie des Sciences. séence du Avril, Gauthier-Villars, 1959, pp. 2437-2449.

  • Roy, G. B. (1960), Contribution de la théorie des graphes a l’étude de certains problems d’ordonnancement. In: Comptes rendus de la 2ème conférence internationale sur la recherché opérationnelle, Aix-en-Provence. English Universities Press, Londres, pp. 171-185.

  • Sasieni, M. W. (1986). A note on PERT times. Management Science, 32, pp. 405-406.

  • Schwindt, C., & Zimmermann, J. (2015). Handbook on Project Management and Scheduling. Springer, Switzerland (ISBN 978-3-319-05442-1).

  • Siemens, N. (1971). A simple time-cost trade-off algorithm. Management Science, 17(6), pp. 354-363.

  • Trietsch, D., Mazmanyan, L., Gevorgyan, L., & Baker, K. R. (2012). Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation. European Journal of Operations Research, 216(2), pp. 386-396.

  • Van Slyke, R. M. (1963). Monte Carlo methods and the PERT problem. Operational Research, 11, pp. 839-861.

  • Vanhoucke, M., & Coelho, J. (2016). An approach using SAT solvers for the RCPSP with logical constraints. European Journal of Operations Research, 249(2), pp. 577-591.

  • Yao, M., & Chu, W. (2007). A new approximation algorithm for obtaining the probability distribution function for project completion time. Computers and Mathematics with Applications, 54, pp. 282-295.

Organization, Technology and Management in Construction: an International Journal

Co-published with University of Zagreb, Faculty of Civil Engineering

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 35
PDF Downloads 11 11 9