Overview of construction simulation approaches to model construction processes

Open access


Construction simulation is a versatile tech­nique with numerous applications. The basic simulation methods are discrete-event simulation (DES), agent-based modeling (ABM), and system dynamics (SD). Depending on the complexity of the problem, using a basic simulation method might not be enough to model construction works appropriately; hybrid approaches are needed. These are combinations of basic methods, or pairings with other techniques, such as fuzzy logic (FL) and neural networks (NNs). This paper presents a framework for applying sim­ulation for problems within the field of construction. It describes DES, SD, and ABM, in addition to presenting how hybrid approaches are most useful in being able to reflect the dynamic nature of construction processes and capture complicated behavior, uncertainties, and depend­encies. The examples show the application of the frame­work for masonry works and how it could be used for obtaining better productivity estimates. Several structures of hybrid simulation are presented alongside their inputs, outputs, and interaction points, which provide a practical reference for researchers on how to implement simulation to model construction systems of labor-intensive activities and lays the groundwork for applications in other con­struction-related activities.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AbouRizk S. Halpin D. Mohamed Y. & Hermann U. (2011). Research in modeling and simulation for improving construction engineering operations. Journal of Construction Engineering and Management 137(10) pp. 843-852.

  • AbouRizk S. M. (2010). Role of simulation in construction engineering and management. Journal of Construction Engineering and Management 136(10) pp. 1140-1153.

  • AbouRizk S. M. & Halpin D. W. (1992). Statistical properties of construction duration data. Journal of Construction Engineering and Management 118(3) pp. 525-544.

  • AbouRizk S. M. & Sawhney A. (1993). Subjective and interactive duration estimation. Canadian Journal of Civil Engineering 20 pp. 457-470.

  • Alvanchi A. Lee S. H. & AbouRizk S. (2011). Modeling framework and architecture of hybrid system dynamics and discrete event simulation for construction. Computer-Aided Civil and Infrastructure Engineering 26(2) pp. 77-91.

  • Alzraiee H. Zayed T. & Moselhi O. (2012). Methodology for synchronizing discrete event simulation and system dynamics models. In: Laroque C. Himmelspach J. Pasupathy R. Rose O. & Uhrmacher A. M. (eds.) Proceedings of the 2012 Winter Simulation Conference (WSC). IEEE Berlin Germany pp. 1-11.

  • Alzraiee H. Zayed T. & Moselhi O. (2015). Dynamic planning of construction activities using hybrid simulation. Automation in Construction 49 pp. 176-192.

  • Ayyub B. M. & Haldar A. (1984). Project scheduling using fuzzy set concepts. Journal of Construction Engineering and Management 110(2) pp. 189-204.

  • Balaban M. Hester P. & Diallo S. (2014). Towards a theory of multi-method M&S approach: Part I. In: Tolk A. Diallo S. Y. Ryzhov I. O. Yilmaz L. Buckley S. & Miller J. A. (eds.) Proceedings of the 2014 Winter Simulation Conference. IEEE Savannah GA USA pp. 1652-1663.

  • Borshchev A. (2013). Multi-method modeling. In: Pasupathy R. Kim S. -H. Tolk A. Hill R. & Kuhl M. E. (eds.) Proceedings of the 2013 Winter Simulation Conference. IEEE Washington DC USA pp. 4089-4100. Available at https://informs-sim.org/ wsc13papers/includes/files/410.pdf.

  • Borshchev A. & Filippov A. (2004). From system dynamics and discrete event to practical agent based modeling : reasons techniques tools. In: Kennedy M. Winch G. W. Langer R. S. Rowe J. I. & Yanni J. M. (eds.) Proceedings of the 22nd International Conference of the System Dynamics Society. System Dynamics Society Oxford UK. Available at: http:// www2.econ.iastate.edu/tesfatsi/systemdyndiscreteeventabm­compared.borshchevfilippov04.pdf.

  • Dabirian S. Khanzadi M. & Moussazadeh M. (2016). Predicting labor costs in construction projects using agent-based modeling and simulation. Scientia Iranica 23(1) pp. 91-101.

  • Dawood N. Hobbs B. & Fanning A. (2001). Standardization of brickwork construction: identification and measurement of standard processes. In: Akintoye A. (ed.) Proceedings 17th Annual ARCOM Conference. ARCOM Salford UK pp. 321-329. Available at http://www.arcom.ac.uk/-docs/proceedings/ ar2001-321-329_Dawood_Hobbs_and_Fanning.pdf.

  • De Salles D. C. Gonçalves Neto A. C. & Marujo L. G. (2016). Using fuzzy logic to implement decision policies in system dynamics models. Expert Systems with Applications 55 pp. 172-183.

  • Fahrland D. A. (1970). Combined discrete event continuous systems simulation. Simulation 14(2) pp. 61-72.

  • Florez L. (2017). Crew allocation system for the masonry industry. Computer-Aided Civil and Infrastructure Engineering 32(10) pp. 874-889.

  • Florez L. & Castro-Lacouture D. (2014). Labor management in masonry construction: a sustainable approach. In: 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC 2014): Automation Construction and Environment. International Association for Automation & Robotics in Construction (IAARC) Sydney Australia pp. 529-536.

  • Forrester J. W. (1961). Industrial dynamics. Productivity Press Portland Oregon.

  • Gordon G. (1961). A general purpose systems simulation program. In: Proceedings of the December 12-14 1961 Eastern Joint Computer Conference: Computers - Key to Total Systems Control - AFIPS ’61 (Eastern). ACM Press Washington DC USA pp. 87-104.

  • Hajdu M. & Bokor O. (2016). Sensitivity analysis in PERT networks: Does activity duration distribution matter? Automation in Construction 65 pp. 1-8.

  • Hsu S. C. Weng K. W. Cui Q. & Rand W. (2016). Understanding the complexity of project team member selection through agent-based modeling. International Journal of Project Management 34(1) pp. 82-93.

  • Khanzadi M. Nasirzadeh F. & Alipour M. (2012). Integrating system dynamics and fuzzy logic modeling to determine concession period in BOT projects. Automation in Construction 22 pp. 368-376.

  • Khanzadi M. Nasirzadeh F. Mir M. & Nojedehi P. (2017). Prediction and improvement of labor productivity using hybrid system dynamics and agent-based modeling approach. Construction Innovation 18(1) pp. 2-19.

  • Kunc M. (2017). System dynamics: a soft and hard approach to modelling. In: Chan W. K. V. D’Ambrogio A. Zacharewicz G. Mustafee N. Wainer G. & Page E. (eds.) Proceedings of the 2017 Winter Simulation Conference. IEEE Las Vegas NV USA pp. 597-606.

  • Lättilä L. Hilletofth P. & Lin B. (2010). Hybrid simulation models - When why how? Expert Systems with Applications 37(12) pp. 7969-7975.

  • Law A. M. (2015). Simulation Modeling and Analysis. 5th edn. McGraw-Hill New York.

  • Lorterapong P. & Moselhi O. (1996). Project-network analysis using fuzzy sets theory. Journal of Construction Engineering and Management 122(4) pp. 308-318.

  • Martinez J. C. (2010). Methodology for conducting discrete-event simulation studies in construction engineering and management. Journal of Construction Engineering and Management 136(1) pp. 3-16.

  • Mawdesley M. J. & Al-Jibouri S. (2009). Modelling construction project productivity using systems dynamics approach. International Journal of Productivity and Performance Management 59(1) pp. 18-36.

  • Moradi S. Nasirzadeh F. & Golkhoo F. (2015). A hybrid SD-DES simulation approach to model construction projects. Construction Innovation 15(1) pp. 66-83.

  • Mosterman P. J. (1999). An overview of hybrid simulation phenomena and their support by simulation packages. In: Vaandrager F. W. & van Schuppen J. H. (eds.) Hybrid Systems: Computation and Control. Springer Berg en Dal The Netherlands pp. 165-177.

  • Mustafee N. Powell J. Brailsford S. C. Diallo S. Padilla J. & Tolk A. (2015). Hybrid simulation studies and hybrid simulation systems: definitions challenges and benefits. In: Yilmaz L. Chan W. K. V. Moon I. Roeder T. M. K. Macal C. & Rossetti M. D. (eds.) Proceedings of the 2015 Winter Simulation Conference. IEEE Huntington Beach CA USA pp. 1678-1692.

  • Nasirzadeh F. Khanzadi M. & Mir M. (2018). A hybrid simulation framework for modelling construction projects using agent-based modelling and system dynamics: an application to model construction workers’ safety behavior. International Journal of Construction Management 18(2) pp. 132-143.

  • Nojedehi P. & Nasirzadeh F. (2017). A hybrid simulation approach to model and improve construction labor productivity. KSCE Journal of Civil Engineering 21(5) pp. 1516-1524.

  • Peña-Mora F. Han S. Lee S. & Park M. (2008). Strategic-operational construction management: hybrid system dynamics and discrete event approach. Journal of Construction Engineering and Management 134(9) pp. 701-710.

  • Raoufi M. & Robinson Fayek A. (2015). Integrating Fuzzy logic and agent-based modeling for assessing construction crew behavior. In: Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS. IEEE Redmond WA USA.

  • Raoufi M. Seresht N. G. & Robinson Fayek A. (2016). Overview of Fuzzy simulation techniques in construction engineering and management. In Ceberio M. & Kreinovich V. (eds.) 2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS). IEEE El Paso TX USA pp. 1-6.

  • Robinson Fayek A. & Oduba A. (2005). Predicting industrial construction labor productivity using Fuzzy expert systems. Journal of Construction Engineering and Management 131(8) pp. 938-941.

  • Sargent R. G. (2015). An introductory tutorial on verification and validation of simulation models. In: Yilmaz L. Chan W. K. V. Moon I. Roeder T. M. K. Macal C. & Rossetti M. D. (eds.) Proceedings of the 2015 Winter Simulation Conference. IEEE Huntington Beach CA USA pp. 1729-1740.

  • Sawhney A. Bashford H. Walsh K. & Mulky A. R. (2003). Agent-based modeling and simulation in construction. In: Chick S. Sánchez P. J. Ferrin D. & Morrice D. J. (eds.) Proceedings of the 2003 Winter Simulation Conference. IEEE New Orleans LA USA pp. 1541-1547.

  • Shaheen A. A. Robinson Fayek A. & AbouRizk S. M. (2009). Methodology for integrating fuzzy expert systems and discrete event simulation in construction engineering. Canadian Journal of Civil Engineering 36(9) pp. 1478-1490.

  • Siebers P. O. MacAl C. M. Garnett J. Buxton D. & Pidd M. (2010). Discrete-event simulation is dead long live agent-based simulation! Journal of Simulation 4(3) pp. 204-210.

  • Son J. W. Rojas E. M. & Shin S.-W. (2015). Application of agent-based modeling and simulation to understanding complex management problems in CEM research. Journal of Civil Engineering and Management 21(8) pp. 998-1013.

  • Swinerd C. & McNaught K. R. (2012). Design classes for hybrid simulations involving agent-based and system dynamics models. Simulation Modelling Practice and Theory 25 pp. 118-133.

  • Thomas H. R. Završki I. (1999). Construction baseline productivity: theory and practice. Journal of Construction Engineering and Management 125(5) pp. 295-303.

  • Watkins M. Mukherjee A. Onder N. & Mattila K. (2009). Using agent-based modeling to study construction labor productivity as an emergent property of individual and crew interactions. Journal of Construction Engineering and Management 135(7) pp. 657-667.

  • Zadeh L. A. (1980). Fuzzy sets versus probability. Proceedings of the IEEE 68(3) p. 421.

  • Zhang H. Tam C. M. & Li H. (2005). Modeling uncertain activity duration by fuzzy number and discrete-event simulation. European Journal of Operational Research 164 pp. 715-729.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 446 446 31
PDF Downloads 337 337 42