The impact of anthropogenic factors on the occurrence of molybdenum in stream and river sediments of central Upper Silesia (Southern Poland)

Anna Pasieczna 1 , Izabela Bojakowska 1 ,  and Weronika Nadłonek 2
  • 1 Polish Geological Institute – National Research Institute, , 00-975, Warsaw
  • 2 Departament of Economic Geology, Faculty of Earth Sciences, University of Silesia, 41-200, Sosnowiec, Poland

Abstract

In our study, a detailed survey was conducted with the aim to determine the distribution and possible anthropogenic sources of molybdenum in river and stream sediments in the central Upper Silesian Industrial Region (Southern Poland), where for many years, iron and zinc smelters as well as coking and thermal power plants were operating. At the same time, this has also been a residential area with the highest population density in the country. Sediments (1397 samples in total) were collected from rivers and streams, and analysed for the content of molybdenum and 22 other elements. ICP-AES and CV-AAS methods were applied for the determination of the content of elements. The studies revealed molybdenum content in the range of < 0.5–204.8 mg·kg−1 with the average content 1.9 mg·kg−1. About half of the samples contained < 0.5 mg·kg−1 of molybdenum, and only 4.6% of the samples showed values > 5 mg·kg−1. The spatial distribution of molybdenum demonstrated by the geochemical map has indicated that the principal factor determining its content in sediments is the discharge of wastewater from steelworks and their slag heaps. Another source of this element in sediments has been the waste of the historical mining of zinc ore and metallurgy of this metal. Additionally, molybdenum migration from landfills of power plants, coal combustion and Mo emission to the atmosphere and dust fall-out have been significant inputs of Mo pollution to the sediments.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 30 lat Kombinatu koksochemicznego „Zabrze” SA., 2010. Wydawnictwo Kombinat Koksochemiczny „Zabrze” SA.

  • ALARY J., BOURBON P., ESCLASSAN J., LEPERT, J.C., VANDAELE J., KLEIN F. 1983. Zinc, lead, molybdenum contamination in the vicinity of an electric steelworks and environmental response to pollution abatement by bag filter. Water, Air, and Soil Pollution 20 :137–145.

  • AMORELLO D., ORECCHIO S. 2015. Vanadium and molybdenum concentrations in particulate from Palermo (Italy): analytical methods using voltammetry. Frontiers of Environmental Science & Engineering 9: 605–614.

  • ARAKAKI T., MORSE J.W. 1993. Coprecipitation and adsorption of Mn(II) with mackinawite (FeS) under conditions similar to those found in anoxic sediments. Geochimica Cosmochimica Acta 57: 9–14.

  • BATURIN G.N 2002. Manganese and molybdenum in phosphorites from the ocean. Lithology and Mineral Resources 37: 412–428.

  • BATTOGTOKH B., LEE J.M., WOO N. 2014. Contamination of water and soil by the Erdenet cooper-molybdenum mine in Mongolia. Environmental Earth Sciences 71: 3363–3374.

  • BHATTACHARYYA S., DONAHOE R. J., PATEL D. 2009. Experimental study of chemical treatment of coal fly ash to reduce the mobility of priority trace elements. Fuel 88: 1173–1184.

  • BOJAKOWSKA I., BORUCKI J., 1994. Molybdenum in stream sediment on the area of occurrence of the Dukla Folds and their margin. Geological Quarterly 38: 155–168.

  • BOROVEC Z., 1993. Partitioning of silver, beryllium and molybdenum among chemical fractions in the sediments from the Labe [Elbe] River in Central Bohemia, Czech Rep. GeoJournal 29, 359–364.

  • BOROWY R., 1997. Wczoraj – dziś – jutro... kopalni „Katowice-Kloefas”. Historia węglem pisana. Wydawnictwo KWK Katowice-Kloefas. Katowice.

  • BRODZIŃSKI I., GAŁKA M., WILK S., LIS J., PASIECZNA A., WOŁKOWICZ S., STRZELECKI R., STRZEMIŃSKA K., KRIEGER W., 2004. Objaśnienia do Mapy Geośrodowiskowej Polski w skali 1:50 000, ark. Zabrze. Państw. Inst. Geol., Warszawa.

  • BURCHART-KAROL D. 2010. Środowiskowa ocena technologii hutnictwa żelaza i stali na podstawie LCA. Prace Naukowe GIG, Górnictwo i Środowisko 3: 5–13.

  • CEMPIEL E., CZAJKOWSKA A., NOWIŃSKA K., POZZI M. 2014. Przejawy antropopresji w zlewni rzeki Bytomki. Wydawnictwo Politechniki Śląskiej. Gliwice.

  • CHEN J., YUAN J., WU S., LIN B., YANG Z. 2012. Distribution of trace element contamination in sediments and riverine agricultural soils of the Zhongxin River, South China, and evaluation of local plants for biomonitoring. Journal of Environmental Monitoring 14: 2663–2672.

  • COOK S.J. 2000. Distribution and dispersion of molybdenum in lake sediments adjacent to porphyry molybdenum mineralization, central British Columbia. Journal of Geochemical Exploration 71: 13–50.

  • CYGORIJNI K.J., 1989. Produkcja cynku z rud galmanowych w XIX wieku na ziemiach polskich. Wrocław-Warszawa-Kraków-Gdańsk-Łódź.

  • CZAJA S., 1999. Zmiany stosunków wodnych w warunkach silnej antropopresji (na przykładzie konurbacji katowickiej). Prace Naukowe Uniwersytetu Śląskiego, 1782.

  • DE GALE N., ADAMS C., WIXSON B., LOFTIN K., HUANG Y., 2004. Lead, zinc, copper, and cadmium in fish and sediments from the Big River and Flat River Creek of Missouri’s Old Lead Belt. Environmental Geochemistry and Health 26: 37–49.

  • DE VOS W., TARVAINEN T. (eds.) 2006. Geochemical Atlas of Europe. Part 2. Geological Survey of Finland, Espoo.

  • DEGENHARDT O., 1870. Der Oberschlesian-Polnische-Bergdistrict mit Hinweglassung des Diluviums. Karte von Oberschlesien 1:100 000. Verlag der Landkarten handlung von J.H. Neumann, Berlin.

  • DEONARINE A., KOLKER A., DOUGHTEN M.W. 2015. Trace elements in coal ash. USGS Fact Sheet: 2015–3037.

  • DUBININ A.V., USPENSKAYA T.Y., GAVRILENKO G.M., RASHIDOV V.A. 2008. Geochemistry and genesis of Fe-Mn mineralization in island arcs in the West Pacific Ocean. Geochemistry International 46: 1206–1227.

  • DWORAK J.S., 1995. Karol Godula pionier przemysłu cynkowego na Górnym Śląsku. Ruda Śląska.

  • ENZMANN R.D., 1972. Molybdenum: element and geochemistry. In: The Encyclopedia of Geochemistry and Environmental Sciences. Fairbridge ed., Van Nostrand Reinhold Co, New York: 753–759.

  • FU J., HU X., TAO X., YU H., ZHANG X. 2013. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China. Chemosphere 93:1887–95.

  • GUCWA I., WIESER T., 1980. Geochemia i mineralogia skał osadowych fliszu karpackiego zasobnych w materię organiczną. Prace Mineralogiczne 69: 1–43.

  • HALMI M.I.E., AHMAD S.A., 2014. Chemistry, biochemistry, toxicity and pollution of molybdenum: A mini review. Journal of Biochemistry, Microbiology and Biotechnology 2:1–6.

  • JARREL W.M., PAGE A.L., ELSEEWI A.A. 1980. Molybdenum in the environment. Springer-Verlag New York.

  • KABATA-PENDIAS A., MUKHERJEE A., 2007. Trace Elements from Soil to Human. Springer-Verlag Berlin Heidelberg.

  • KABATA-PENDIAS A., PENDIAS H., 1999. Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa.

  • KALEMBKIEWICZ J., SOčO E., 2009. Lotny popiół przemysłowy jako potencjalne źródło emisji molibdenu. Ochrona Środowiska i Zasobów Naturalnych 40: 601–607.

  • KONDRACKI J., 2009. Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa.

  • LALONDE B. A., ERNST W., COMEAU F., 2011. Trace metal concentrations in sediments and fish in the vicinity of ash lagoon discharges from coal-combustion plants in New Brunswick and Nova Scotia, Canada. Archives of Environmental Contamination and Toxicology 61: 472–481.

  • LI X., THORNTON I., 2001. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry 16:1693–1706.

  • MACHOWSKI R., 2010. Przemiany geosystemów zbiorników wodnych powstałych w nieckach osiadania na Wyżynie Katowickiej. Prace Naukowe Uniwersytetu Śląskiego, 2811.

  • MAJ M., KALANDYK B., ZAPAŁA R., 2010. Nowoczesne metody recyklingu w przemyśle metalurgicznym. Archives of Foundry Engineering 10: 103–106.

  • McBRIDE M.B., SPIERS G. 2001. Trace element content of selected fertilizers and dairy manures as determined by ICPMS. Communications in Soil Science and Plant Analysis 32:139–156.

  • MENDEL R. R., BITTNER F., 2006. Cell biology of molybdenum. Biochimica Biophysica Acta 1763: 621–635.

  • MIGASZEWSKI Z.M., GAŁUSZKA A. 2003. Zarys Geochemii Środowiska. Wyd. Akademii Świętokrzyskiej, Kielce.

  • MIGASZEWSKI Z.M., GAŁUSZKA A. 2016. Geochemia Środowiska. Wyd. Naukowe PWN, Warszawa.

  • MOLENDA D., 1963. Górnictwo kruszcowe na terenie złóż śląskokrakowskich do połowy XVI wieku. Wyd. PAN, Wrocław-Warszawa-Kraków.

  • MOLENDA D., 1972. Kopalnie rud ołowiu na terenie złóż śląskokrakowskich w XVI–XVIII wieku. Wyd. Ossolineum, Wrocław.

  • MORSE J.W., ARAKAKI T., 1993. Adsorption and coprecipitation of divalent metals with mackinawite [FeS]. Geochimica et Cosmochimica Acta 57: 3635–3640.

  • MUCHA D., 2010. Kanalizacja Rawy i otwartych kanałów ściekowych. Gospodarka Wodna 5: 209–215. NIEMIEROWSKI W., 1983. Dwa wieki huty „Zabrze” 1782–1982. Zabrze.

  • NOCOŃ W., 2009. Metale ciężkie w osadach dennych wybranych dopływów rzeki Kłodnicy. Inżynieria Ochrony Środowiska 12: 65–76.

  • NOCOŃ W., KOSTECKI, M. 2005. Hydro-chemical characteristic of the Bytomka River. Archives of Environmental Protection 31: 31–42.

  • NOCOŃ W., KOSTECKI M., KOZŁOWSKI J., 2006. Charakterystyka hydrochemiczna rzeki Kłodnica. Ochrona Środowiska 28: 39–44.

  • NOWAK J., LUTYŃSKA S., 2015. Archiwum Gospodarki Odpadami i Ochrony Środowiska 17: 11–18.

  • PANDEY V.C., ABHILASH P.C., UPADHYAY R.N., TEWARI D.D. 2009. Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L.: Implication for safe utilization of fly ash for agricultural production. Journal of Hazardous Materials 166: 255–259.

  • PASIECZNA A., BOJAKOWSKA I. 2016. Assessment of sediment pollution of anthropogenic water reservoirs in the central part of the Katowice Upland. Przegląd Geologiczny 10: 806–813.

  • PASIECZNA A. (ed.), FAJFER J., STRZEMIŃSKA K. 2016a. Detailed geochemical map of Upper Silesia 1: 25 000, Zabrze sheet. Polish Geological Institute, Warsaw.

  • PASIECZNA A. (ed.), FAJFER J., STRZEMIŃSKA K. 2016b. Detailed geochemical map of Upper Silesia 1: 25 000, Chorzów sheet. Polish Geological Institute, Warsaw.

  • PASIECZNA A. (ed.), FAJFER J., STRZEMIŃSKA K., TOMASSIMORAWIEC H. 2016c. Detailed geochemical map of Upper Silesia 1: 25 000, Ornontowice sheet. Polish Geological Institute, Warsaw.

  • PASIECZNA A. (ed.), BOJAKOWSKA I., FAJFER J., NADŁONEK W., 2016d. Detailed geochemical map of Upper Silesia 1: 25 000, Mikołów sheet. Polish Geological Institute, Warsaw.

  • PATER Z., 2014. Podstawy metalurgii i odlewnictwa. Wyd. Politechniki Lubelskiej. Lublin.

  • PAULO, A., STRZELSKA-SMAKOWSKA, B., 2000. Rudy metali nieżelaznych i szlachetnych. Wydawnictwo AGH, Kraków.

  • PIEGZA M., 2007. Chropaczów – zarys dziejów osady, gminy, dzielnicy. Wyd. Muzeum Miejskiego w Świętochłowicach.

  • POULSON BRUCKER R.L., MCMANUS J., SEVERMANN S., BERELSON W.M. 2009. Molybdenum behavior during early diagenesis: Insights from Mo isotopes. Geochemistry Geophysis Geosystems 10: 1–25.

  • REIMANN C., DE CARITAT P., 1998. Chemical elements in the environment – Factsheets for the geochemist end environmental scientists. Springer, Berlin-Heidelberg.

  • SALMINEN R. (ed.), 2005. Geochemical Atlas of Europe. Part 1. Geological Survey of Finland. Espoo.

  • SCHWARZ G., MENDEL R.R., RIBBE M.W., 2009. Molybdenum cofactors, enzymes and pathways. Nature 460:839–849.

  • SJÖSTEDT S., WäLLSTEDT T., GUSTAFSSON J.P., BORG H. 2009. Speciation of aluminium, arsenic and molybdenum in excessively limed lakes. Science of the Total Environment 407: 5119–5127.

  • SMEDLEY P.L., KINNIBURGH D.G. 2017. Molybdenum in natural waters: A review of occurrence, distributions and controls. Applied Geochemistry 84:387–432.

  • SORDOŃ-KULIBABA B., 2010. Program ochrony środowiska dla miasta Świętochłowice. Urząd Miasta Świętochłowice.

  • STOJEK M., 2013. The concentration of molybdenum and copper in rocks, soils and plants in the area of Jabłonki (Eastern Beskids Mts.). Ochrona Środowiska i Zasobów Naturalnych 24 : 13–17.

  • SULIMIERSKI F., WALEWSKI W. (red.)1880–1914. Słownik geograficzny Królestwa Polskiego i innych krajów słowiańskich.

  • SZULC W., 2013. Transformacja polskiego hutnictwa żelaza do gospodarki wolnorynkowej. Wyd. Instytutu Metalurgii Żelaza, Gliwice.

  • SZUWARZYŃSKI M., 1996. Ore bodies in the Silesian-Cracow ore district, Poland. Prace Państwowego Instytutu Geologicznego 154: 9–24.

  • TANG Q., BAO Y., HE X., ZHOU H., CAO Z., GAO P. ZHONG Y., HU Y., ZHANG X. 2014. Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir, China. Science of the Total Environment 1: 258–266.

  • VINK J., 2009. The origin of speciation: trace metal kinetics over natural water/sediment interfaces and the consequences for bioaccumulation. Environmental Pollution 157: 519–527.

  • VYSKOČIL A., VIAU C. 1999. Assessment of molybdenum toxicity in humans. Journal of Applied Toxicology 19: 143–219

  • WYCZÓŁKOWSKI J., 1957. Szczegółowa Mapa Geologiczna Polski w skali 1:50 000, arkusz Zabrze. Instytut Geologiczny. Warszawa.

  • XIAO R., BAI J., HUANG L., ZHANG H., CUI B. LIU X. 2013. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China. Ecotoxicology 22: 1564–1575.

  • YU CH., XU SH., CHEN G., ZHOU L. 2008. Leaching experiments on heavy metal Mo release from sharn molybdenum ore tailings. Ecology and Environment17: 636–640.

  • YU CH., XU SH., GANG M., CHEN G., ZHOU L. 2011. Molybdenum pollution and speciation in Nver River sediments impacted with Mo mining activities in western Liaoning, northeast China. International Journal of Environmental Research 5: 205–212.

  • ZŁOTY A., 2008. Ligota, Murcki i inne szkice historyczne. Bractwo Gospodarcze Związku Górnośląskiego, Katowice.

OPEN ACCESS

Journal + Issues

Search