Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium

Open access


The aim of the study was to compare the toleration of Poa pratensis, Lolium perenne and Festuca rubra to cadmium contamination as well as the phytoremediation potential of these three species of grass. The pot experiment was conducted in four replications in pots containing 2.0 kg of soil. The soil was contaminated with three doses of Cd – 30, 60 and 120 mg·kg−1. After two months, the aerial parts of plants were harvested. The roots were dug up, brushed off from the remaining soil and washed with water. The biomass was defined and the cadmium concentration was determined in aerial parts and roots. The phytoremediation potential of grasses was evaluated using biomass of grasses, bioaccumulation factor (BF) and translocation factor (TF). All three tested species of grasses had TF < 1 and BF-root > 1. It indicates their suitability for phytostabilisation and makes them unsuitable for phytoextraction of Cd from the soil. Comparing the usefulness of the tested grasses for phytoremediation has shown that the phytostabilisation potential of P. pratensis was lower than that of L. perenne and F. rubra. P. pratensis was distinguished by higher TF, smaller root biomass and lower tolerance for Cd excess in the soil in comparison with the two other test grasses. At the same time, L. perenne was characterised by the smallest decrease in biomass and the largest Cd accumulation in roots at the lowest dose of Cd. It indicates good usefulness for phytostabilisation of soils characterised by a relatively small pollution by cadmium.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ABAGA N.O.Z. DOUSSET S. MBENGUE S. MUNIER-LAMY C. 2014. Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso? Chemosphere 113: 2–47.

  • AIBIBU N. LIU Y. ZENG G. WANG X. CHEN B. SONG H. XU L. 2010. Cadmium accumulation in Vetiveria zizanioides and its effects on growth physiological and biochemical characters. Bioresource Technology 101: 6297–6303.

  • BROOKS R.R. 1998. Plants that hyperaccumulate heavy metals: their role in phytoremediation microbiology archaeology mineral exploration and phytomining. CAB International Wallingford.

  • CHEN Y. SHEN Z. LI X. 2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry 19: 1553–1565.

  • CHERAGHI M. LORESTANI B. KHORASANI N. YOUSEF N. KARAMI M. 2011. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Biological Trace Element Research 144: 1133-1141.

  • CLEMENS S. 2006. Toxic metal accumulation responses to exposure and mechanisms of tolerance in plants. Biochemistry 88: 1707–1719.

  • DAVIES B.E. VAUGHAN J. LALOR G.C. VUTCHKOV M. 2003. Cadmium and zinc adsorption maxima of geochemically anomalous soils (Oxisols) in Jamaica. Chemical Speciation and Bioavailability 15 3: 59-66.

  • DERAM A. DENAYER F.O. DUBOURGIER H.C. DOUAY F. PETIT D. VAN HALUVYN C. 2007. Zinc and cadmium accumulation among and within populations of the pseudometalophytic species Arrhenatherum elatius: Implications for phytoextraction. Science of the Total Environment 372: 372–381.

  • DERAM A. DENAYER F.O. PETIT D. VAN HALUVYN C. 2006. Seasonal variation of cadmium and zinc in Arrhenatherum elatius a perennial grass species from highly contaminated soils. Environmental Pollution 140: 62-70.

  • DI TOPPI L.S. GABBRIELLI R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41 2: 105-130.

  • DZIUBANEK G. BARANOWSKA R. OLEKSIUK K. 2012. Metale ciężkie w glebach Górnego Śląska-problem przeszłości czy aktualne zagrożenie? Journal of Ecology and Health 16 4: 169-176.

  • EKMEKCI Y. TANYOLAC D. AYHAN B. 2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology 165: 600—611.

  • FILIPIAK K. WILKOS S. 1995. Obliczenia statystyczne. Opis systemu AWAR. IUNG Puławy

  • GOMES M.P. MARQUES T.C.L.L.S.M. SOARES A.M. 2013. Cadmium effects on mineral nutrition of the Cd-hyperaccumulator Pfaffia glomerata. Biologia 68 2: 223-230.

  • GUO Q. MENG L. MAO P.C. TIAN X.X. 2014. An assessment of Agropyron cristatum tolerance to cadmium contaminated soil. Biologia Plantarum 58 1: 174-178.

  • KABATA-PENDIAS A. 2010. Trace Elements in Soils and Plants Fourth Edition. CRC Press Boca Raton.

  • KARCZEWSKA A. 2008. Ochrona gleb i rekultywacja terenów zdegradowanych. UWP Wrocław.

  • KARCZEWSKA A. LEWINSKA K. GAŁKA B. 2013. Arsenic extractability and uptake by velvet grass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. Journal of Hazardous Materials 262: 1014–1021.

  • KAZNINA N.M. TITOV A.F. 2014. The Influence of Cadmium on Physiological Processes and Productivity of Poaceae Plants. Biology Bulletin Reviews 4 4: 335-348.

  • KORZENIOWSKA J. STANISLAWSKA-GLUBIAK E. 2015. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals. Environmental Science and Pollution Research 22: 11648-11657.

  • KORZENIOWSKA J. STANISLAWSKA-GLUBIAK E. IGRAS J. 2011. Applicability of energy crops for metal phytostabilization of soils moderately contaminated with copper nickel and zinc. Journal of Food Agriculture and Environment 9 3/4: 693-697.

  • LIN L.Q. CONG L. YUN W.H. YANG J. MING H. WAN Z. KAI C. LEI H. 2015. Association of soil cadmium contamination with ceramic industry: A case study in a Chinese town. Science of the Total Environment 514: 26–32.

  • MALIK R.N. HUSAIN S.Z. NAZIR I. 2010. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad Pakistan. Pakistan Journal of Botany 42 1: 291-301.

  • MALISZEWSKA-KORDYBACH B. SMRECZKA B. KLIMKOWICZ-PAWLAS A. 2013. Zagrożenie zanieczyszczeniami chemicznymi gleb na obszarach rolniczych w Polsce w świetle badań IUNG-PIB w Puławach. Studia i Raporty IUNG-PIB 35 9: 97-118.

  • MARQUES A.P.G.C. RANGEL A.O.S.S. CASTRO P.M.L. 2009. Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Environmental Science and Technology 39: 622–654.

  • MCGRATH S. ZHAO F.J. 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology 14: 277–282.

  • MENDEZ M.O. MAIER R.M. 2008. Phytostabilization of Mine Tailings in Arid and Semiarid Environments-An Emerging Remediation Technology. Environmental Health Perspectives 116 3: 278-283

  • NAN Z. LI J. ZHANG J. CHENG G. 2002. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. The Science of the Total Environment 285: 187-195.

  • NAZAR R. IQBAL N. MASOOD A. KHAN M.I.R. SYEED S. KHAN N.A. 2012. Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation. American Journal of Plant Sciences 3: 1476-1489.

  • PINTO A.P. MOTA A.M. DE VARENNES A. PINTO F.C. 2004. Influence of organic matter on the uptake of cadmium zinc copper and iron by sorghum plants. Science of the Total Environment 326: 239–247.

  • QUEZADA-HINOJOSA R. FÖLLMI K.B. GILLET F. MATERA V. 2015. Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel Swiss Jura Mountains. Catena 124: 85–96.

  • Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie standardów jakości gleby oraz standardów jakości ziemi (Dz. U. RP Nr 165 poz. 1359)

  • RIZZARDO C. TOMASI N. MONTE R. VARANINI Z. NOCITO F.F. CESCO S. PINTON R. 2012. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots. Planta 236 6: 1701-1712.

  • SIUTA J. 2004. Rekultywacja terenu lagun osadowych w Oczyszczalni Ścieków „Hajdów”. Inżynieria Ekologiczna 9: 43-54

  • SPIAK Z. GEDIGA K. 2012. Przydatność wybranych gatunków roślin do zasiedlania terenów zdegradowanych przez przemysł miedziowy. Przemysł Chemiczny 91 5: 996-999.

  • STANISLAWSKA-GLUBIAK E. KORZENIOWSKA J. KOCON A. 2012. Effect of the reclamation of heavy metal-contaminated soil on growth of energy willow. Polish Journal of Environmental Studies 21 1:187–192

  • STANISLAWSKA-GLUBIAK E. KORZENIOWSKA J. KOCOŃ A. 2015. Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environmental Science and Pollution Research 22 6: 4706–4714.

  • SUN J.L. WU W.J. ZHAO R.X. ZHANG X.X. 2003. Studies on pollution of heavy metals in soils and technology of plant remediation Journal of Changchun University of Science and Technology 26 4: 46-48.

  • WAHID A. GHANI A. 2008. Varietal differences in mung bean (Vigna radiata) for growth yield toxicity symptoms and cadmium accumulation. Annals of Applied Biology 152: 59-69.

  • XIA H.P. 2004. Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere 54: 345–353.

  • XU P. WANG Z. 2013. Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue: Chemical forms and tissue distribution. Environmental and Experimental Botany 96: 35-42.

  • YANG Y. NAN Z. ZHAO Z. WANG Z. WANG S. WANG X. JIN W. ZHAO C. 2011. Bioaccumulation and translocation of cadmium in cole (Brassica campestris L.) and celery (Apium graveolens) grown in the polluted oasis soil Northwest of China. Journal of Environmental Sciences 23 8: 1368-1374.

  • YOON J. CAO X. ZHOU Q. MA L.Q. 2006. Accumulation of Pb Cu and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368: 456–464.

  • ZHANG X. GAO B. XIA H. 2014. Effect of cadmium on growth photosynthesis mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicology and Environmental Safety 106: 102–108.

  • ZHANG S. LIN H. DENG L. GONG G. JIA Y. XU X. LI T. LI Y. CHEN H. 2013. Cadmium tolerance and accumulation characteristic Siegesbeckia orientalis L. Ecological Engineering 5: 133–139.

  • ZHANG X. XIA H. LI Z. ZHUANG P. GAO B. 2010. Potential of four forage grasses in remediation of Cd and Zn contaminated soil. Bioresource Technology 101: 2063-2066.

Journal information
Impact Factor

CiteScore 2018: 0.41

SCImago Journal Rank (SJR) 2018: 0.143
Source Normalized Impact per Paper (SNIP) 2018: 0.387

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 371 284 12
PDF Downloads 178 133 7