Summer–winter contrast in carbon isotope and elemental composition of total suspended particulate matter in the urban atmosphere of Krakow, Southern Poland

  • 1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland

Abstract

The city of Krakow located in southern Poland ranks among the most polluted urban agglomerations in Europe. There are persisting controversies with respect to impact of different pollution sources operating in Krakow agglomeration on air quality within the city. The presented pilot study was aimed at exploring the possibilities offered by elemental and carbon isotope composition of total suspended particulate matter (TSPM) for better characterization of its sources in Krakow atmosphere. The analyses of carbon isotope composition of total carbon in the investigated TSPM samples were supplemented by parallel analyses of radiocarbon content in atmospheric carbon dioxide (CO2). This study revealed large seasonal variability of carbon isotope composition in the analysed TSPM samples. This large variability reflects seasonally varying contribution of different sources of fossil and modern carbon to the TSPM pool. The elemental composition of TSPM also reveals distinct seasonal variability of the analysed elements, reflecting varying mixture of natural and anthropogenic sources of those elements. A linear relationship between the fossil carbon load in the TSPM samples and the fossil carbon load in the atmospheric CO2 was found, pointing to the presence of additional source of anthropogenic carbonaceous particles not associated with burning of fossil fuels. Wearing of tyres and asphalt pavement is most probably the main source of such particles.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Baklanov, A., Molina, L. T., & Gauss, M. (2016). Megacities, air quality and climate. Atmos. Environ., 126, 235–249. DOI: 10.1016/j.atmosenv.2015.11.059.

  • 2. World Human Organization. (2016). Urban Ambient Air Pollution databaseUpdate 2016. Retrieved August 20, 2019, from www.who.int/airpollution/data/cities-2016/en/.

  • 3. Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Herndon, S., Jimenez, J. L., Lamb, B., Osornio-Vargas, A. R., Russell, P., Schauer, J. J., Stevens, P. S., Volkamer, R., & Zavala, M. (2010). An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys., 10, 8697–8760. DOI: 10.5194/acp-10-8697-2010.

  • 4. Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M. J., & Zhang, R. (2014). Elucidating severe urban haze formation in China. PNAS, 111(49), 17373–17378. DOI: 10.1073/pnas.1419604111.

  • 5. Zou, Y., Wang, Y., Zhang, Y., & Koo, J. -H. (2017). Arctic sea ice, Eurasia snow, and extreme winter haze in China. Sci. Adv., 3(3), e1602751. DOI: 10.1126/sciadv.1602751.

  • 6. Fang, G. -C., Wu, Y. -S., Huang, S. -H., & Rau, J. -Y. (2005). Review of atmospheric metallic elements in Asia during 2000–2004. Atmos. Environ., 39(17), 3003–3013. DOI: 10.1016/j.atmosenv.2005.01.042.

  • 7. Rodriguez, S., Querol, X., Alastuey, A., & la Rosa, J. D. (2007). Atmospheric particulate matter and air quality in the Mediterranean: a review. Environ. Chem. Lett., 5(1), 1–7. DOI: 10.1007/s10311-006-0071-0.

  • 8. Cuccia, E., Massabo, D., Ariola, V., Bove, M. C., Fermo, P., Piazzalunga, A., & Prati, P. (2013). Size-resolved comprehensive characterization of airborne particulate matter. Atmos. Environ., 67, 14–26. DOI: 10.1016/j.atmosenv.2012.10.045.

  • 9. Lammel, G., Rohrl, A., & Schreiber, H. (2002). Atmospheric lead and bromine in Germany. Post abatement levels, variabilities and trends. Environ. Sci. Pollut. Res., 9(6), 397–404. DOI: 10.1007/BF02987589.

  • 10. Vallius, M., Janssen, N. A. H., Heinrich, J., Hoek, G., Ruuskanen, J., Cyrys, J., Van Grieken, R., de Hartog, J. J., Kreyling, W. G., & Pekkanen, J. (2005). Sources and elemental composition of ambient PM2.5 in three European cities. Sci. Total Environ., 337(1/3), 147–162. DOI: 10.1016/j.scitotenv.2004.06.018.

  • 11. Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements. A review. Atmos. Environ., 77, 78–97. DOI: 10.1016/j. atmosenv.2013.04.028.

  • 12. Chueinta, W., Hopke, P. K., & Paatero, P. (2000). Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos. Environ., 34(20), 3319–3329. DOI: 10.1016/S1352-2310(99)00433-1.

  • 13. Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V. L., Colombi, C., Alves, C., Custodio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Cruz Minguillon, M., Manousakas, M. I., Maggos, T., Vratolis, S., Harrison, R. M., & Querol, X. (2016). AIRUSE-LIVE+: a harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys., 16, 3289–3309. DOI: 10.5194/acp-16-3289-2016.

  • 14. Samek, L., Stegowski, Z., Furman, L., Styszko, K., Szramowiat, K., & Fiedor, J. (2017). Quantitative assessment of PM2.5 sources and their seasonal variation in Krakow. Water Air Soil Pollut., 228, 290. DOI: 10.1007/s11270-017-3483-5.

  • 15. Chow, J. C., Watson, J. G., Crow, D., Lowental, D. H., & Merrifield, T. (2001). Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci. Technol., 34(1), 23–34. DOI: 10.1080/02786820119073.

  • 16. Górka, M., Rybicki, M., Simoneit, B. R. T., & Mary-nowski, L. (2014). Determination of multiple organic matter sources in aerosol PM10 from Wrocław, Poland using molecular and stable carbon isotope compositions. Atmos. Environ., 89, 739–748. DOI: 10.1016/j. atmosenv.2014.02.064.

  • 17. Aguilera, J., & Whigham, L. D. (2018). Using the 13C/12C isotope ratio to characterize the emission sources of airborne particulate matter: a review of literature. Isot. Environ. Health Stud., 54(6), 573–587. DOI: 10.1080/10256016.2018.1531854.

  • 18. Currie, L. A. (2000). Evolution of multidisciplinary frontiers of 14C aerosol science. Radiocarbon, 42(1), 115–126. DOI: 10.1017/S003382220005308X.

  • 19. Heal, M. R. (2014). The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review. Anal. Bioanal. Chem., 406, 81–98. DOI: 10.1007/s00216-013-7404-1.

  • 20. Szidat, S., Jenk, T., Gäggeler, H., Synal, H. -A., Fisseha, R., Baltensperger, U., Kalberer, M., Samburova, V., Reimann, S., Kasper-Giebl, A., & Hajdas, I. (2004). Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zürich, Switzerland. Atmos. Environ., 38, 4035–4044. DOI: 10.1016/j.atmosenv.2004.03.066.

  • 21. Zotter, P., El-Haddad, I., Zhang, Y., Hayes, P. L., Zhang, X., Lin, Y. -H., Wacker, L., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Surratt, J. D., Weber, R., Jimenez, J. L., Szidat, S., Baltensperger, U., & Prévôt, A. S. H. (2014). Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. J. Geophys. Res. Atmos., 119, 6818–6835. DOI: 10.1002/2013JD021114.

  • 22. Zhang, Y. -L., Huang, R. -J., El Haddad, I., Ho, K. -F., Cao, J. -J., Han, Y., Zotter, P., Bozzetti, C., Daellenbach, K. R., Canonaco, F., Slowik, J. G., Salazar, G., Szwikowski, M., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Baltensperger, U., Prévôt, A. S. H., & Szidat, S. (2015). Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmos. Chem. Phys., 15, 1299–1312. DOI: 10.5194/acp-15-1299-2015.

  • 23. Dusek, U., Hitzenberger, R., Kasper-Giebl, A., Kistler, M., Meijer, H. A. J., Szidat, S., Wacker, L., Holzinger, R., & Röckmann, T. (2017). Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands: insights from a year-long radiocarbon study. Atmos. Chem. Phys., 17, 3233–3251. DOI: 10.5194/acp-17-3233-2017.

  • 24. Garbaras, A., Šapolaitė, J., Garbarienė, I., Ežerinskis, Z., Mašalaite-Nalivaikė, A., Skipitytė, R., Plukis, A., & Remeikis, V. (2018). Aerosol source (biomass, traffic and coal emission) apportionment in Lithuania using stable carbon and radiocarbon analysis. Isot. Environ. Health Stud., 54(5), 463–474. DOI: 10.1080/10256016.2018.1509074.

  • 25. Samek, L. (2012). Source apportionment of the PM10 fraction of particulate matter collected in Krakow, Poland. Nukleonika, 57(4), 601–606.

  • 26. Samek, L., Zwozdziak, A., & Sowka, I. (2013). Chemical characterization and source identification of Particulate Matter PM10 in a rural and an urban site in Poland. Environ. Prot. Eng., 39(4), 91–103. DOI: 10.5277/epe130408.

  • 27. World Health Organization. (2005). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment. WHO.

  • 28. European Union. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union, 11.6.2008, L 152. Available from https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050.

  • 29. Chief Inspectorate of Environmental Protection. (2017). Air quality portalPM10 data from Krakow; Air quality stations for the period 20052015. Warszawa: CIEP. Retrieved July 30, 2019, from http://powietrze.gios.gov.pl. (in Polish).

  • 30. Bajorek-Zydroń, K., & Wężyk, P. (Eds.). (2016). Atlas pokrycia terenu i przewietrzania Krakowa (Atlas of land cover and ventilation of Krakow). Krakow: Urząd Miasta Krakowa. Available from http://geo.ur.krakow.pl/download/pobierz.php?file=publikacje/literatura/Wezyk_Atlas_2016_tekst.pdf.

  • 31. Statistical Office of Poland. (2017). Statistical Office of Poland information portalTransport and communication in Kraków; vehicles. Retrieved July 30, 2019, from http://bdl.stat.gov.pl. (in Polish).

  • 32. Zimnoch, M., Wach, P., Chmura, L., Gorczyca, Z., Rozanski, K., Godlowska, J., Mazur, J., Kozak, K., & Jeričević, A. (2014). Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe. Atmos. Chem. Phys., 14(18), 9567–9581. DOI: 10.5194/acp-14-9567-2014.

  • 33. Holynska, B., Najman, J., Ostachowicz, B., Ostachowicz, J., Trabska, J., & Wegrzynek, D. (1996). Analytical application of multifunctional system of EDXRF. J. Trace Microprobe Tech., 14(1), 119–130.

  • 34. Vekemans, B., Janssens, K., Vincze, L., Adams, F., & Van Espen, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL). New developments. X-Ray Spectrom., 23(6), 278–285. DOI: 10.1002/xrs.1300230609.

  • 35. Major, I., Furu, E., Janovics, R., Hajdas, I., Kertész, Zs., & Molnár, M. (2012). Method development for the 14C measurement of atmospheric aerosols. Acta Phys. Debrecina, XLVI, 83–95.

  • 36. Mook, W. G., & van der Plicht, J. (1999). Reporting 14C activities and concentrations. Radiocarbon, 41(3), 227–239. DOI: 10.1017/S0033822200057106.

  • 37. Kuc, T., Rozanski, K., Zimnoch, M., Necki, J., Chmura, L., & Jelen, D. (2007). Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in central Europe: long-term changes of regional anthropogenic fossil fuel CO2 emissions. Radiocarbon, 49(2), 807–816. DOI: 10.1017/S0033822200042685.

  • 38. Kuc, T. (1991). Concentration and carbon isotopic composition of atmospheric CO2 in southern Poland. Tellus B, 43(5), 373–378. DOI: 10.3402/tellusb. v43i5.15411.

  • 39. Florkowski, T., Grabczak, J., Kuc, T., & Rozanski, K. (1975). Determination of radiocarbon in water by gas or liquid scintillation counting. Nukleonika, 20(11/12), 1053–1066.

  • 40. Levin, I., Schuchard, J., Kromer, B., & Münnich, K. O. (1989). The continental European Suess effect. Radiocarbon, 31(3), 431–440. DOI: 10.1017/S0033822200012017.

  • 41. Levin, I., Naegler, T., Kromer, B., Diehl, M., Francey, R., Gomez-Pelaez, A., Steele, P., Wagenbach, D., Weller, R., & Worthy, D. (2010). Observations and modeling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B, 62(1), 26–46. DOI: 10.1111/j.1600-0889.2009.00446.x.

  • 42. Zimnoch, M., Jelen, D., Galkowski, M., Kuc, T., Necki, J., Chmura, L., Gorczyca, Z., Jasek, A., & Rozanski, K. (2012). Partitioning of atmospheric carbon dioxide over Central Europe: insights from combined measurements of CO2 mixing ratios and their carbon isotope composition. Isot. Environ. Health Stud., 48(3), 421–433. DOI: 10.1080/10256016.2012.663368.

  • 43. Mazzei, F., D’Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., & Vecchi, R. (2008). Characterization of particulate matter sources in an urban environment. Sci. Total Environ., 401(1/3), 81–89. DOI: 10.1016/j.scitotenv.2008.03.008.

  • 44. Yttri, K. E., Simpson, D., Stenstrőm, K., Puxbaum, H., & Svendby, T. (2011). Source apportionment of the carbonaceous aerosol in Norway – quantitative estimates based on 14C, thermal-optical and organic tracer analysis. Atmos. Chem. Phys., 11(17), 9375–9394. DOI: 10.5194/acp-11-9375-2011.

  • 45. Huang, J., Kang, S., Shen, C., Cong, Z., Liu, K., Wang, W., & Liu, L. (2010). Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet. Atmos. Res., 96(4), 553–559. DOI: 10.1016/j.atmosres.2010.01.003.

  • 46. Vivaldo, G., Masi, E., Taiti, C., Caldarelli, G., & Mancuso, S. (2017). The network of plants volatile organic compounds. Sci. Rep., 7, 11050. DOI: 10.1038/s41598-017-10975-x.

  • 47. Sensuła, B., & Pazdur, A. (2013). Stable carbon isotopes of glucose received from pine tree-rings as bioindicators of local industrial emission of CO2 in Niepołomice Forest (1950–2000). Isot. Environ. Health Stud., 49(4), 532–541. DOI: 10.1080/10256016.2013.865026.

  • 48. Knorre, A. A., Siegwolf, R. T. W., Saurer, M., Sidorova, O. V., Vaganov, E. A., & Kirdianov, A. V. (2010). Twentieth century trends in tree ring stable isotopes (δ13C and δ18O of Larix sibirica under dry conditions in the forest steppe in Siberia. J. Geophys. Res., 115(G3), G03002. DOI: 10.1029/2009JG000930.

  • 49. Kornilova, A., Huang, L., Saccon, M., & Rudoplh, J. (2016). Stable carbon isotope ratios of ambient aromatic volatile organic compounds. Atmos. Chem. Phys., 16(18), 11755–11772. DOI: 10.5194/acp-16-11755-2016.

  • 50. Kanpanon, N., Kesemsap, P., Thaler, P., Kositsup, B., Gay, F., Lacote, R., & Epron, D. (2015). Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis). Tree Physiol., 35(11), 1166–1175. DOI: 10.1093/treephys/tpv070.

  • 51. Lewan, M. D., & Kotarba, M. J. (2014). Thermal-maturity limit for primary thermogenic-gas generation from humic coals as determined by hydrous pyrolysis. AAPG Bull., 98, 2581–2610. DOI: 10.1306/06021413204.

  • 52. Widory, D. (2006). Combustibles, fuels and their combustion products: A view through carbon isotopes. Combust. Theory Model., 10(5), 831–841. DOI: 10.1080/13647830600720264.

  • 53. Zimnoch, M. (2009). Stable isotope composition of carbon dioxide emitted from anthropogenic sources in the Krakow region. Nukleonika, 54(4), 291–295.

  • 54. Mašalaitė, A., Garbaras, A., & Remeikis, V. (2012). Stable isotopes in environmental investigations. Lith. J. Phys., 52(3), 261–268.

OPEN ACCESS

Journal + Issues

Search