Source term estimation for the MARIA research reactor and model of atmospheric dispersion of radionuclides with dry deposition

  • 1 Nuclear Facilities Operations Department, National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400, Otwock-Świerk, Poland


Source term is the amount of radionuclide activity, measured in becquerels, released to the atmosphere from a nuclear reactor, together with the plume composition, over a specific period. It is the basis of radioprotection-related calculation. Usually, such computations are done using commercial codes; however, they are challenging to be used in the case of the MARIA reactor due to its unique construction. Consequently, there is a need to develop a method that will be able to deliver useful results despite the complicated geometry of the reactor site. Such an approach, based upon the Bateman balance equation, is presented in the article, together with the results of source term calculation for the MARIA reactor. Additionally, atmospheric dispersion of the radionuclides, analysed with the Gauss plume model with dry deposition, is presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Andrzejewski, K. J., Kulikowska, T. A., & Marcinkowska, Z. E. (2008). Computations of fuel management in MARIA reactor with highly poisoned beryllium matrix. Nukleonika, 53(2), 173–179.

  • 2. International Atomic Energy Agency. (2008). Derivation of the source term and analysis of the radiological consequences of research reactor accidents. Vienna: IAEA. (Safety Reports Series No. 53).

  • 3. Khaled, S. M. E., Soad, M. E., & Maha, S. E. (2014). Modeling of atmospheric dispersion with dry deposition: an application on a research reactor. Revista Brasileira de Meteorologia, 29(3), 331–337. DOI: 10.1590/0102-778620130654.

  • 4. Shamussudin, S. D., Omar, N., & Koh, M. H. (2017). Development of radionuclide dispersion modelling software based on Gaussian plume model. Matematika, 33(2), 149–157.

  • 5. Lutman, E. R., Jones, S. R., Hill, R. A., McDonald, P., & Lambers, B. (2004). Comparison between the predictions of Gaussian plume model and Lagrangian particle dispersion model for annual average calculations of long-range dispersion of radionuclides. J. Environ. Radioact., 75(3), 339–355. DOI: 10.1016/j. jenvrad.2003.11.013.

  • 6. Oura, M., Ohba, R., Robins, A., & Kato, S. (2018). Validation study for an atmospheric dispersion model, using effective source heights determined from wind tunnel experiments in nuclear safety analysis. Atmosphere, (9)3, 111–130. DOI: 10.3390/atmos9030111.

  • 7. Mehboob, K., Xinrong, C., & Ali, M. (2012). Comprehensive review of source term analysis and experimental programs. Research Journal of Applied Sciences, Engineering and Technology, 4(17), 3168–3181.

  • 8. Pytel, K., Borek-Kruszewska, E., Czarnecki, M., Dorosz, M., Frydrysiak, A., Gołąb, A., Idzikowski, J., Jaroszewicz, J., Jezierski, K., Krzysztoszek, G., Kurdej, J., Lechniak, J., Lipka, M., Marcinkowska, Z., Migdal, M., Nowakowski, P., Owsianko I., Prokopowicz, R., Przybysz, Z., Szaforz, P., Stanaszek, R., Tarchalski, M., Wilczek, E., & Witkowski, P. (2015). Maria research reactor safety report. Otwock-Świerk: National Centre for Nuclear Research. (in Polish).

  • 9. Cacuci, D. G. (2010). Handbook of nuclear engineering. Vol. 1: Nuclear engineering fundamentals. US: Springer.

  • 10. Pytel, K., & Nowicki, K. (1989), Model transportu produktów rozszczepienia i zagrożenia personelu w obiekcie reaktora MARIA w wyniku przepalenia paliwa (Model of transport of fission products and risks to personnel in a MARIA reactor facility due to fuel burnout). Otwock-Świerk: Institute of Atomic Energy. (IEA Internal Report no. 81/R-V/89).

  • 11. Kwiatkowski, T. (2012). Model of radioactive substances diffusion through the safety barriers of a nuclear reactor. Master Thesis, Warsaw University of Technology, Warszawa. Available from

  • 12. International Atomic Energy Agency. (2001). Generic models use in assessing the impact of discharges of radioactive substances to the environment. Vienna: IAEA. (Safety Reports Series No. 19).

  • 13. International Atomic Energy Agency. (1986). Atmospheric dispersion models for application in relation to radionuclide releases. Vienna: IAEA. (IAEA-TECDOC-379).

  • 14. Minister of the Environment. (2010). Rozporządzenie Ministra Środowiska z dnia 26 stycznia 2010 r. w sprawie wartości odniesienia dla niektórych substancji w powietrzu (Regulation of the Minister of the Environment on reference values for certain substances in the air). Dz. U., 2010, no. 16, item 87.

  • 15. Sedefian, L., & Bennett, E. (1980). A comparison of turbulence classification schemes. Atmos. Environ., 14(7), 741–750. DOI: 10.1016/0004-6981(80)90128-6.

  • 16. Lechniak, J. (2006). Zagrożenie środowiska radioizotopami jodu uwalnianymi z reaktora jądrowego “Maria” (Environmental hazard from iodine radio-isotopes released from the ‘Maria’ nuclear reactor). Unpublished Master Thesis, University of Ecology and Management, Warszawa.

  • 17. Eckerman, K. F., & Ryman, J. C. (1993). External exposure to radionuclides in air, water, and soil. Oak Ridge: Oak Ridge National Laboratory. (Federal Guidance Report No. 12, EPA-402-R-93-081).

  • 18. Council of Ministers. (2005). Rozporządzenie Rady Ministrów z dnia 18 stycznia 2005 r. w sprawie dawek granicznych promieniowania jonizującego (Regulation of 18 January 2005 of the Council of Ministers on ionizing radiation dose limits). Dz. U., 2005, no. 20, item 168.

  • 19. Council of Ministers. (2004). Rozporządzenie Rady Ministrów z dnia 27 kwietnia 2004 r. w sprawie wartości poziomów interwencyjnych dla poszczególnych rodzajów działań interwencyjnych oraz kryteriów odwołania tych działań (Regulation of 27 April 2004 of the Council of Ministers on intervention levels for various intervention measures and criteria for cancelling intervention measures). Dz. U., 2004, no. 98, item 987.


Journal + Issues