The effects of fuel type on control rod reactivity of pebble-bed reactor

Abstract

As a crucial core physics parameter, the control rod reactivity has to be predicted for the control and safety of the reactor. This paper studies the control rod reactivity calculation of the pebble-bed reactor with three scenarios of UO2, (Th,U)O2, and PuO2 fuel type without any modifications in the configuration of the reactor core. The reactor geometry of HTR-10 was selected for the reactor model. The entire calculation of control rod reactivity was done using the MCNP6 code with ENDF/B-VII library. The calculation results show that the total reactivity worth of control rods in UO2-, (U,Th)O2-, and PuO2-fueled cores is 15.87, 15.25, and 14.33%Δk/k, respectively. These results prove that the effectiveness of total control rod in thorium and uranium cores is almost similar to but higher than that in plutonium cores. The highest reactivity worth of individual control rod in uranium, thorium and plutonium cores is 1.64, 1.44, and 1.53%Δk/k corresponding to CR8, CR1, and CR5, respectively. The other results demonstrate that the reactor can be safely shutdown with the control rods combination of CR3+CR5+CR8+CR10, CR2+CR3+CR7+CR8, and CR1+CR3+CR6+CR8 in UO2-, (U,Th)O2-, and PuO2-fueled cores, respectively. It can be concluded that, even though the calculation results are not so much different, however, the selection of control rods should be considered in the pebble-bed core design with different scenarios of fuel type.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. International Energy Agency. (2008). Energy technology prospectives: Scenario 7 strategies to 2050. Technical report. OECD/IEA, France.

  • 2. Generation IV International Forum (GIF). (2014). Technology Roadmap Update for Generation IV Nuclear Energy Systems. OECD Nuclear Energy Agency.

  • 3. Frima, L. L. W. (2013). Burnup in a molten salt fast reactor. Master Thesis. Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology. Available from https://d1rkab7tlqy5f1.cloudfront.net/TNW/Afdelingen/Radiation%20Science%20and%20Technology/Research%20Groups/RPNM/Publications/MSc_Lodewijk_Frima.pdf.

  • 4. Graafland, C. (2014). Modeling and analysis of a depressurized loss of forced cooling event in a thorium fueled high temperature reactor. Bachelor Thesis. Department Radiation Science & Technology, Faculty of Applied Sciences, Delft University of Technology. Available from https://d1rkab7tlqy5f1.cloudfront.net/TNW/Afdelingen/Radiation%20Science%20and%20Technology/Research%20Groups/RPNM/Publications/BSc_Chris_Graafland.pdf.

  • 5. Burns, J. R. (2015). Reactivity control of a PWR 19×19 uranium silicide fuel assembly. M. Sc. Thesis. Georgia Institute of Technology. Available from https://smartech.gatech.edu/bitstream/handle/1853/53975/BURNS-THESIS-2015.pdf?sequence=1&isAllowed=y.

  • 6. Liu, S., Li, Z., Wang, K., Cheng, Q., & She, D. (2018). Random geometry capability in RMC code for explicit analysis of polytype particle/pebble and applications to HTR-10 benchmark. Ann. Nucl. Energy, 111, 41–49.

  • 7. Goorley, J. T., James, M. R., Booth, T. E., Brown, F. B., Bull, J. S., Cox, L. J., Durkee, J. W. Jr., Elson, J. S., Fensin, M. L., Forster, R., A. III, Hendricks, J. S., Hughes, H. G. III, Joghns, R. C., Kiedrowski, B. C., Martz, R. L., Mashnik, S. G., McKinney, G. W., Pelowitz, D. B., Prael, R. E., Sweezy, J. E., Waters, L. S., Wilcox, T., & Zukaitis, A. J. (2013). Initial MCNP6 release overviewMCNP6 version 1.0. Los Alamos National Laboratory. (LA-UR-13-22934). DOI: 10.2172/1086758. Available from https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-22934.

  • 8. Chadwick, M. B., Obložinský, P., Herman, M., Greene, N., McKnight, R., Smith, D., Young, P., MacFarlane, R., Hale, G., Frankle, S., Kahler, A. C., Kawano, T., Little, R., Madland, D., Moller, P., Mosteller, R., Page, P., Talou, P., Trellue, H., & van der Marck, S. (2006). ENDF/B-VII: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nucl. Data Sheets, 107(12), 2931–3060.

  • 9. International Atomic Energy Agency. (2013). Evaluation of high temperature gas-cooled reactor performance: Benchmark analysis related to initial testing of the HTTR and HTR10. Vienna, Austria: IAEA. (IAEA-TECDOC-1382).

  • 10. Halla-aho, L. (2014). Development of an HTR-10 model in the SERPENT Reactor Physics Code. Unpublished Master’s Thesis. Lappeenranta University of Technology, Finland.

  • 11. Setiadipura, T., Irwanto, D., & Zuhair. (2015). Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor. Atom Indonesia, 41(1), 7–15.

  • 12. Hosseini, S. A., & Athari-Allaf, M. (2016). Effects of the wallpaper fuel design on the neutronic behavior of the HTR-10. Kerntechnik, 81(6), 627–633.

  • 13. Zuhair., Suwoto., Setiadipura, T., & Su’ud, Z. (2017). The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident. Kerntechnik, 82(1), 92–97. http://dx.doi.org/10.3139/124.110628.

  • 14. Zuhair., Suwoto, S., & Supriatna, P. (2012). Studi model heksagonal MCNP5 dalam perhitungan benchmark fisika teras HTR-10. Jurnal Matematika dan Sains, 17(2), 61–70.

  • 15. Zuhair., & Suwoto. (2015). Analisis efek kecelakaan water ingress terhadap reaktivitas doppler teras RGTT200K. Jurnal Teknologi Reaktor Nuklir TRI DASA MEGA, 17(1), 31–40. http://dx.doi.org/10.17146/tdm.2015.17.1.2238.

  • 16. Zuhair., Suwoto., & Yazid, P. I. (2013). Investigasi parameter bahan bakar pebble dalam perhitungan teras thorium RGTT200K. Jurnal Sains dan Teknologi Nuklir Indonesia, 14(2), 65–78.

  • 17. Zuhair., Suwoto., Setiadipura, T., Bakhri, S., & Sunaryo, G. R. (2018). Study on characteristic of temperature coefficient of reactivity for plutonium core of pebbled bed reactor. J. Phys.-Conf. Series, 962(1), 012058.

  • 18. Suwoto., Adrial, H., Hamzah, A., Zuhair., Bakhri, S., & Sunaryo, G. R. (2018). Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code. J. Phys.-Conf. Series, 962(1), 012029.

  • 19. Lebenhalt, J. L. (2001). MCNP4B modeling of pebblebed reactors. M.Sc. Thesis. Department of Nuclear Engineering, Massachusetts Institute of Technology. Available from https://web.mit.edu/pebble-bed/papers1_files/MCNP4B%20Modeling.pdf.

  • 20. Rosales, J., Munoz, A., Garcia, C., Garcia, L., Brayner, C., Perez, J., & Abanades, A. (2014). Computational model for the neutronic simulation of pebble bed reactor’s core using MCNPX. Int. J. Nucl. Energy, 2014, article ID 279073. http://dx.doi.org/10.1155/2014/279073.

  • 21. Zuhair., Suwoto., Yazid, P. I., & Pane, J. S. (2016). Studi model benchmark MCNP6 dalam perhitungan reaktivitas batang kendali HTR-10. GANENDRA Majalah IPTEK Nuklir, 19(2), 95–103. http://dx.doi.org/10.17146/gnd.2016.19.2.2880.

  • 22. Hosking, G., & Newton, T. D. (2005). Proposed benchmark specification for an HTR fuelled with reactor grade plutonium. Nuclear Energy Agency, Nuclear Science Committee. (NEW/NSC/DOC(2003)22).

OPEN ACCESS

Journal + Issues

Search