Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. I. Application of 64Cu radiotracer for investigation of copper ore leaching

Tomasz Smoliński 1 , Marcin Rogowski 1 , Marcin Brykała 1 , Marta Pyszynska 1  and Andrzej G. Chmielewski 1
  • 1 Institute of Nuclear Chemistry and Technology, 16 Dorodna St.,, Warsaw, Poland


Scientifi c objective of this work was elaboration of radiometric method for the development of hydrometallurgical process for recovery of Cu from the copper ore. A neutron activation analysis (NAA) was identifi ed as a very convenient tool for the process investigation. The samples of copper ore were activated in a nuclear reactor. The parameters of the neutron activation were calculated. Radioisotope 64Cu was selected as an optimal tracer, and it was used for the investigation of the leaching process. During the experiments, various processes applying leaching media such as sulphuric acid, nitric acid, and organic acids were investigated. The recovery of the metals using sulphuric acid was insuffi cient, around 10%. Investigated organic media also did not meet expectations. The best results were obtained in experiments with nitric acid. Up to 90% of Cu and other metals were extracted from the copper ore. Copper concentration calculations obtained by NAA were confi rmed by inductively coupled plasma mass spectrometry (ICP-MS) technique. Both techniques gave comparable results, but the advantage of the NAA is a possibility for easy online measurements without shutting down or disturbing the system.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. KGHM Polska Miedź S.A. (2016). Integrated report for 2015. Retrieved August 30, 2017, from

  • 2. KGHM Polska Miedź S.A. (2016). KGHM Polska Miedź S. A. Strategy for 2017-2021 with an outlook to 2040. Retrieved November 10, 2017, from

  • 3. Baran, A., Śliwka, M., & Lis, M. (2013). Selected properties of flotation tailings wastes deposited in the Gilów and Żelazny Most waste reservoirs regarding their potential environmental management. Arch. Min. Sci., 58(3), 969-978. DOI: 10.2478/amsc-2013-0068.

  • 4. Gupta, C. K., & Mukherjee, T. K. (1990). Hydrometallurgy in extraction processes (Vol. 1). Boca Raton: CRC Press.

  • 5. Fleming, C. A. (1992). Hydrometallurgy of precious metals recovery. Hydrometallurgy, 30(1/3), 127-162.

  • 6. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., & Deveci, H. (2012). Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner. Eng., 25(1), 28-37.

  • 7. Yang, R., Wang, S., Duan, H., Yan, X., Huang, Z., Guo, H., & Yang, X. (2016). Effi cient separation of copper and nickel from ammonium chloride solutions through the antagonistic effect of TRPO on Acorga M5640. Hydrometallurgy, 163, 18-23.

  • 8. Dreisinger, D. B., Richmond, G., Hess, F., & Lancaster, T. (2002). The competitive position of the Mt. Gordon copper process in the copper industry. In Proceedings of the ALTA 2002 Copper Hydrometallurgy Forum, Perth, Australia. ALTA Metallurgical Services.

  • 9. Antonijevic, M. M., Dimintrijevic, M., & Jankovic, Z. (1997). Leaching of pyrite with hydrogen peroxide in sulphuric acid. Hydrometallurgy, 46, 71-83.

  • 10. Marsden, J., Brewer, B., & Hazen, N. (2003). Copper concentrate leaching developments by Phelps Dodge Corporation. In C. Young, C. Anderson, D. Dreisinger, A. Alfantazi, A. James, & B. Harris (Eds.), Hydrometallurgy 2002. Proceedings of the 5th International Symposium honouring Professor Ian M. Ritchie (Vol. 2, pp. 1429-1446). Warrendale, PA: The Minerals, Metals and Materials Society.

  • 11. Dreisinger, D. (2004). New developments in hydrometallurgical treatment of copper concentrates. Eng. Min. J., 205, 32-35.

  • 12. Ngulube, R. (2016). Application of biohydrometallurgy to copper mining in Zambia: Prospects and opportunities. Int. J. Mineral Processing and Extractive Metallurgy, 1(4), 19-25.

  • 13. Baxter, K., Dreisinger, D. B., & Pratt, G. (2013). The Sepon Copper Project: Development of a fl owsheet. In C. Young, A. Alfantazi, C. Anderson, A. James, D. Dreisinger, & B. Harris (Eds.), Electrometallurgy and environmental hydrometallurgy (Vol. 2, pp. 1487-1502). Warrendale, PA: The Minerals, Metals and Materials Society.

  • 14. Watling, H. R. (2006). The bioleaching of sulphide minerals with emphasis on copper sulphides - A review. Hydrometallurgy, 84, 81-108.

  • 15. Hyvärinen, O., Hämäläinen, M., & Leimala, R. (2002). Outokumpuhydrocopper™ process: A novel concept in copper production. Metall-Fachzeitschrift für Metallurgie, 56(11), 712-713.

  • 16. Dreisinger, D. (2006). Copper leaching from primary sulphides: Options for biological and chemical extraction of copper. Hydrometallurgy, 83(1/4), 10-20.

  • 17. Stiksma, J., Collins, M. J., Holloway, P., Masters, I. M., & Desroches, G. J. (2000). Process development studies by Dynatec for the pressure leaching of HBMS copper sulphide concentrates. CIM Bull., 93, 118-123.

  • 18. Wawszczak, D., Deptula, A., Lada, W., Smolinski, T., Olczak, T., Brykala, M., Wojtowicz, P., Rogowski, M., Milkowska, M., & Chmielewski, A. G. (2014). Studies of leaching of copper ores and fl otation wastes. J. Radioanal. Nucl. Chem., 300, 243-247.

  • 19. Senanayake, G. (2009). A review of chloride assisted copper sulphide leaching by oxygenated sulphuric acid and mechanistic considerations. Hydrometallurgy, 98, 21-32.

  • 20. Guettaf, H., Becis, A., Ferhat, K., Hanou, K., Bouchiha, D., & Ferrad, Y. F. (2009). Concentrationpurifi cation of uranium from an acid leaching solution. Physics Procedia, 2, 765-771.

  • 21. Edwards, C. R., & Oliver, A. J. (2000). Uranium processing: A review of current methods and technology. JOM, 52(9), 12-20.

  • 22. Roshani, M., & Kazemi, M. (2009). Studies on the leaching of an arsenic-uranium ore. Hydrometallurgy, 98, 304-307.

  • 23. Leung, S., Heymann, L., & King, D. (2010). The recovery of uranium from acid leached ore using resin-in-pulp technology. In Proceedings of the 3rd International Conference on Uranium 40th Annual Hydrometallurgy Meeting, August 15-18, 2010 (Vol. 2, pp. 15-26). Saskatoon, Saskatchewan, Canada.

  • 24. Chmielewski, A. G., Urbański, T. S., & Migdał, W. (1997). Separation technologies for metals recovery from industrial wastes. Hydrometallurgy, 45, 333-344.

  • 25. Dybczyński, R. (1985). Zastosowania analizy aktywacyjnej. Chem. Anal., 30, 749-760.

  • 26. Cutmore, N. (2014). Nuclear technologies in mining and mineral processing. In P. Brisset, & S. Miskovic (Eds.), Development of radiometric methods for exploration and process optimization in mining and mineral industries. Report of the Consultant meeting Vienna, IAEA, 1-5 September 2014 ([1] p., section 4.1). Vienna: International Atomic Energy Agency.

  • 27. Palige, J., Chmielewski, A. G., Dziewoński, Z. R., Rahimi, H., Naimpour, A., Amini, A., Abedinzadeh, A., & Khalilipour, E. (1995). Radiotracer glass furnaces investigations. Nukleonika, 40(1), 67-80.

  • 28. Petryka, L., & Przewlocki, K. (1983). Radiotracer investigations of benefi ciation copper ore in the industrial fl otation process. Isotopenpraxis Isot. Environ. Health Stud., 19(10), 339-341.

  • 29. Figueiredo, A. M. G., Avristcher, W., Masini, E. A., Diniz, S. C., & Abrão, A. (2002). Determination of lanthanides (La, Ce, Nd, Sm) and other elements in metallic gallium by instrumental neutron activation analysis. J. Alloy. Compd., 344(1/2), 36-39. DOI: 10.1016/S0925-8388(02)00301-8.

  • 30. CSIRO. (2018). Retrieved August 30, 2018, from

  • 31. Chmielewski, T. (2007). Atmospheric leaching of shale by-product from Lubin concentrator. Physicochem. Probl. Minerals Pro., 41, 337-348.

  • 32. Chmielewski, T. (2009). Ługowanie atmosferyczne frakcji łupkowej jako alternatywa zmian technologicznych w ZWR Lubin. In Materiały XII Seminarium “Metody hydrometalurgiczne a rozwój produkcji w KGHM Polska Miedź S.A.”, 17 February 2009 (pp. 37-53). Wrocław: KGHM Cuprum.

  • 33. Bujdoso, E., Feher, I., & Kardos, G. (1973). Activation and decay tables of radioisotopes. Amsterdam, New York: Elsevier.

  • 34. Abdel-Aal, E. A. (2000). Kinetics of sulphuric acid leaching of low grade zinc silicate ore. Hydrometallurgy, 55(3), 247-254.

  • 35. Espiari, S., Rashchi, F., & Sadrnezhaad, S. K. (2006). Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy, 82(1/2), 54-62.

  • 36. Ahmed, I. M., Nayl, A. A., & Daoud, J. A. (2016). Leaching and recovery of zinc and copper from brass slag by sulphuric acid. J. Saudi Chem. Soc., 20, S280-S285. DOI: 10.1016/j.jscs.2012.11.003.

  • 37. Bodas, M. G. (1996). Hydrometallurgical treatment of zinc silicate ore from Thailand. Hydrometallurgy, 40(1/2), 37-49.

  • 38. Akcil, A. (2002). A preliminary research on acid pressure leaching of pyritic copper ore in Kure Copper Mine, Turkey. Miner. Eng., 15(2), 695-699.

  • 39. Antonijevic, M. M., & Bogdanovic, G. D. (2004). Investigation of the leaching of chalcopyritic ore in acidic solutions. Hydrometallurgy, 73, 245-256.

  • 40. Chmielewski, T. (2015). Development of a hydrometallurgical technology for production of metals from KGHM Polska Miedz S.A. concentrates. Physicochem. Probl. Mineral Pro., 51(1), 335-350.

  • 41. Kumar, M., Lee, J. C., Kim, M. S., Jeong, J., & Yoo , K. (2014). Leaching of metals from waste printed circuit boards (WPCBs) using sulphuric and nitric acids. Environ. Eng. Manag. J., 13(10), 2601-2607.

  • 42. Havlik, T., Dvorscikova, J., Ivanova, Z., & Kammel, R. (1999). Sulphuric acid chalcopyrite leaching using ozone as oxidant. Metall-Fachzeitschrift für Metallurgie, 53(1), 57-60.

  • 43. Tsogtkhankhai, D., Mamyachenkov, S. V., Anisimova, O. S., & Naboichenko, S. S. (2011). Thermodynamics of reactions during nitric acid leaching of minerals of a copper concentrate. Russ. J. Non-Ferrous Metals, 52(2), 135-139.

  • 44. Vanýsek, P. (2002). Electrochemical series. In D. R. Lide (Ed.), CRC Handbook of chemistry and physics (83rd ed.) (pp. 823-833). Boca Raton: CRC Press.


Journal + Issues