Preliminary studies on the spatial distribution of artificial 137Cs and natural gamma radionuclides in the region of the Ojców National Park, Poland

Marcin Stobiński 1 , Filip Jędrzejek 1  and Barbara Kubica 1
  • 1 AGH University of Science and Technology, Faculty of Energy and Fuels, 30 Adama Mickiewicza ave.,, Kraków, Poland


The aim of the research is to obtain preliminary information about the spatial distribution of gamma radionuclides in the soils taken from the Ojców National Park with emphasis on the behaviour of artificial radionuclides, with 137Cs as a representative. The natural radionuclides 40K, 226Ra (uranium series), and 228Th (thorium series), which are considered as background radiation, were also determined. In total, 18 soil samples were collected during the summer periods in 2015-2017, while the sampling points were selected with respect to differences in rainfall and local topography gradient. The method was based on gamma-ray spectrometry performed on high-purity germanium (HPGe) gamma detector (relative efficiency 34%). 137Cs was mostly deposited in the top soil layers, with activity in the range of 27.9÷586.6 Bq·kg-1. We found strong positive correlation of the 137Cs activity with the soil organic matter content, and at the same time, its dependence on the rainfall amount. Consequently, the soil types and local climate can control the spatial distribution of 137Cs on a small spatial scale. The quantity of natural radionuclides was highly similar in all samples with the following mean values: 38.0 Bq·kg-1for 228Th, 33.1 Bq·kg-1for 226Ra, and 479.9 Bq·kg-1for 40K.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Guagliardi, I., Rovella, N., Apollaro, C., Bloise A., De Rosa, R., Scarciglia, F., & Buttafuoco, G. (2016). Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, Southern Italy). Chemosphere, 150, 97-108. doi:

    • Crossref
    • Export Citation
  • 2. Pereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. (2017). Soil ecosystem services, sustainability, valuation and management. Environ. Sci. Health, 5, 7-13. DOI: 10.1016/j.coesh.2017.12.003.

  • 3. Stobinski, M., Szarlowicz, K., Reczynski, W., & Kubica, B. (2014). The evaluation of 137Cs radioactivities in soils taken from the Babia Góra National Park. J. Radioanal. Nucl. Chem., 299, 631-635. DOI: 10.1007/s10967-013-2809-z.

  • 4. Kubica, B., Skiba, S., Drewnik, M., Stobiński, M., Kubica, M., Gołaś, J., & Misiak, R. (2010). Radionuclides 137Cs and 40K in the soils of the Tatra National Park (TPN, Poland). Nukleonika, 55(3), 377−386.

  • 5. Szarłowicz, K., Reczyński, W., Kubica, B., Gołaś, J., Kościelniak, P., & Skiba, M. (2011). Sorption of 137Cs and Pb on sediment samples from a drinking water reservoir. Pol. J. Environ. Studies, 20(5), 1305-1312.

  • 6. Kubica, B., Stobiński, M., Szacilowski, G., & Szarlowicz, K. (2017). The activity of selected gamma radionuclides in the Tatra National Park. E3S Web of Conferences, 14, 02036. DOI: 10.1051/e3sconf/20171402036.

  • 7. Szarlowicz, K., & Kubica, B. (2014). 137Cs and 210Pb radionuclides in open and closed water ecosystems. J. Radioanal. Nucl. Chem., 299, 1321-1328.

  • 8. Ritchie, J., & McHenry, J. (1990). Application of radioactive fallout cesium-137 for measuring soil erosion and sediment. J. Environ. Quality, 19(2), 215-233. DOI: 10.2134/jeq1990.00472425001900020006x.

  • 9. Walling, D. E., & Bradley, S. B. (1988). Transport and redistribution of Chernobyl fallout radionuclides by fl uvial processes: Some preliminary evidence. Environ. Geochem. Health, 10, 35-39.

  • 10. Szarlowicz, K., Reczynski, W., Czajka, A., Spyt, B., & Szacilowski, G. (2018). Comprehensive study of the mountainous lake sediments in relation to natural and anthropogenic processes and time (Mały Staw Lake, Poland). Environ. Sci. Pollut., 25, 3335-3347. DOI: 10.1007/s11356-017-0711-x.

  • 11. Szarlowicz, K., Reczynski, W., Misiak, R., & Kubica, B. (2013). Radionuclides and heavy metal concentrations as complementary tools for studying the impact of industrialization on the environment. J. Radioanal. Nucl. Chem., 298(2), 1323-1333.

  • 12. Hötzl, H., Rosner, G., & Winkler, R. (1989). Longterm behaviour of Chernobyl fallout in air and precipitation. J. Environ. Radioact., 10, 157-171. DOI: 10.1016/0265-931X(89)90012-X.

  • 13. Owens, P. N., Walling, D. E., & Qingping, He. (1996). The behaviour of bomb-derived caesium-137 fallout in catchment soils. J. Environ. Radioact., 32, 169-191. DOI: 10.1016/0265-931X(96)84941-1.

  • 14. Davis, R. B., Norton, S. A., Hess, C. T., & Brakke, D. F. (1983). Paleolimnological reconstruction of the effects of atmospheric deposition of acids and heavy metals on the chemistry and biology of lakes in New England and Norway. Hydrobiologia, 103, 113. DOI: 10.1007/BF00028438.

  • 15. Robbins, J. A. (1978). Geochemical and geophysical applications of radioactive lead. In J. O. Nriagu (Ed.), The biochemistry of lead in the environment (pp. 285-393). Amsterdam: Elsevier.

  • 16. Longmore, M. E. (1982). The caesium-137 dating technique and associated applications in Australia - a review. In W. Ambrose, & P. Duerden (Eds.), Archaeometry, Australasian perspective (pp. 310-321). Canberra, Australia: Australian National University Press.

  • 17. Gradziński, M., Gradziński, R., & Jach, R. (2008). Geologia, rzeźba i zjawiska krasowe okolic Ojcowa. In A. Klasa, & J. Partyka (Eds.), Monografi a Ojcowskiego Parku Narodowego, Przyroda (pp. 31-95). Ojców: OPN.

  • 18.

  • 19. Caputa, Z. (2009). Meso- and microclimatic contrasts in the Ojców National Park. Ojców: Muzeum im. prof. Władysława Szafera.

  • 20. Klein, J. (1974). Mezo- i mikroklimat Ojcowskiego Parku Narodowego. Studia Naturae Seria A, 8, 1-105.

  • 21. Mazurek, R., & Wieczorek, J. (2010). Mercury content in soils of The Ojców National Park. Ecological Chemistry and Engineering, 17, 4-5.

  • 22. Misiak, R., Hajduk, R., Stobiński, M., Bartyzel, M., Szarłowicz, K., & Kubica, B. (2011). Self-absorption correction and effi ciency calibration for radioactivity measurement of environmental samples by gamma-ray spectrometry. Nukleonika, 56(1), 23-28.

  • 23. Kubica, B., Tuteja-Krysa, M., Misiak, R., Tronh thi Thu My, Stobiński, M., Godunowa, H., & Kubica, M. (2003). The behavior of Ba and Sr on inorganic and organic ion-exchangers from sulphuric acid solutions - Preliminary experiments. J. Radioanal. Nucl. Chem., 258, 167-170.

  • 24. Brown, R. B., Klin, G. F., & Cutshall, N. H. (1981). Agricultural erosion indicated by 137Cs redistribution, II. Estimates of erosion rates. Soil Sci. Soc. Am. J., 45, 1191-1197.

  • 25. National Atomic Energy Agency. (2017). National Atomic Energy Agency activities of the President of the National Atomic Energy Agency and assessment of nuclear safety and radiological protection in Poland in 2017. Annual report. Warsaw: PAA. (in Polish).


Journal + Issues