Radon-based technique for the analysis of atmospheric stability – a case study from Central Poland

Open access

Abstract

An economical and easy-to-implement technique is outlined by which the mean nocturnal atmospheric mixing state (“stability”) can be assessed over a broad (city-scale) heterogeneous region solely based on near-surface (2 m above ground level [a.g.l.]) observations of the passive tracer radon-222. The results presented here are mainly based on summer data of hourly meteorological and radon observations near Łodź, Central Poland, from 4 years (2008–2011). Behaviour of the near-surface wind speed and vertical temperature gradient (the primary controls of the nocturnal atmospheric mixing state), as well as the urban heat island intensity, are investigated within each of the four radon-based nocturnal stability categories derived for this study (least stable, weakly stable, moderately stable, and stable). On average, the most (least) stable nights were characterized by vertical temperature gradient of 1.1 (0.5)°C·m−1, wind speed of ~0.4 (~1.0) m·s−1, and urban heat island intensity of 4.5 (0.5)°C. For sites more than 20 km inland from the coast, where soils are not completely saturated or frozen, radon-based nocturnal stability classification can significantly enhance and simplify a range of environmental research applications (e.g. urban climate studies, urban pollution studies, regulatory dispersion modelling, and evaluating the performance of regional climate and pollution models).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Pasquil D. (1961). The estimation of the dispersion of windborne material. Met. Mag. 90 33–49.

  • 2. Turner B. (1964). A diffusion model for an urban area. J. Appl. Meteorol. 3 83–91.

  • 3. Williams A. G. Chambers S. D. & Griffiths A. (2013). Bulk mixing and decoupling of the nocturnal stable boundary layer characterized using a ubiquitous natural tracer. Bound.-Layer Meteor. 149 381–402. doi: 10.1007/s10546-013-9849-3.

  • 4. Chambers S. D. Williams A. G. Crawford J. & Griffiths A. D. (2015). On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmos. Chem. Phys. 15 1175–1190.

  • 5. Chambers S. D. Podstawczyńska A. Williams A. G. & Pawlak W. (2016a). Characterising the influence of atmospheric mixing state on urban heat Island intensity using radon-222. Atmos. Environ. 147 355–368.

  • 6. Chambers S. D. Galeriu D. Williams A. G. Melintescu A. Griffiths A. D. Crawford J. Dyer L. Duma M. & Zorila B. (2016b). Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: characterising the atmospheric mixing state. J. Environ. Radioact. 154 68–82.

  • 7. Podstawczyńska A. (2016). Differences of nearground atmospheric Rn-222 concentration between urban and rural area with reference to microclimate diversity. Atmos. Environ. 126 225–234.

  • 8. Williams A. G. Chambers S. D. Conen F. Reimann S. Hill M. Griffiths A. D. & Crawford J. (2016). Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city. Tellus Ser. B-Chem. Phys. Meteorol. 68 30967. DOI: 10.3402/tellusb.v68.30967.

  • 9. Turekian K. K. Nozaki Y. & Benninger L. K. (1977). Geochemistry of atmospheric radon and radon products. Annu. Rev. Earth Planet. Sci. 5 227–255.

  • 10. Balkanski Y. J. Jacob D. J. Gardner G. M. Graustein W. M. & Turekian K. K. (1993). Transport and residence times of continental aerosols inferred from a global three-dimensional simulation of 210Pb. J. Geophys. Res.-Atmos. 98(D11) 20573–20586. DOI: 10.1029/93JD02456.

  • 11. Szegvary T. Conen F. & Ciais P. (2009). European 222Rn inventory for applied atmospheric studies. Atmos. Environ. 43(8) 1536–1539.

  • 12. Griffiths A. D. Zahorowski W. Element A. & Werczynski S. (2010). A map of radon flux at the Australian land surface. Atmos. Chem. Phys. 10 8969–8982.

  • 13. Karstens U. Schwingshackl C. Schmithusen D. & Levin I. (2015). A process-based 222radon flux map for Europe and its comparison to long-term observations. Atmos. Chem. Phys. 15 12845–12865. DOI: 10.5194/acp-15-12845-2015.

  • 14. Chambers S. D. Williams A. G. Zahorowski W. Griffiths A. & Crawford J. (2011). Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere. Tellus Ser. B-Chem. Phys. Meteorol. 63 843–859. DOI: 10.1111/j.1600-0889.2011.00565.x.

  • 15. Wigand A. & Wenk F. (1928). Der gehalt der luftan radium-emanation nach Messungenbei Flugzeugaufstiegen. Ann. Phys. 86(13) 657–686.

  • 16. Moses H. Stehney A. F. & Lucas H. F. J. (1960). The effect of meteorological variables upon the vertical and temporal distributions of atmospheric radon. J. Geophys. Res. 65 1223–1238.

  • 17. Sisigina T. I. (1964). Vertical distribution of radon in the boundary layer of the atmosphere (0-300m) in connection with changing meteorological conditions. U.D.C.551.594.1. Izv. Geophys. 3 414–421.

  • 18. Hosler C. R. (1966). Meteorological effects on atmospheric concentrations of radon (Rn222) RaB (Pb214) and RaC (Bi214) near the ground. Mon. Weather Rev. 94 89.

  • 19. Allegrini I. Febo A. Pasini A. & Schiarini S. (1994). Monitoring of the nocturnal mixed layer by means of participate radon progeny measurement. J. Geophys. Res.-Atmos. 99 18765–18777. DOI: 10.1029/94JD00783.

  • 20. Desideri D. Roselli C. Feduzi L. & Meli M. A. (2006). Monitoring the atmospheric stability by using radon concentration measurements: a study in a central Italy site. J. Radioanal. Nucl. Chem. 270 523–530.

  • 21. Vecchi R. Marcazzan G. & Valli G. (2007). A study on nighttime–daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmos. Environ. 41 2136–2144.

  • 22. Wang F. Zhang H. Ancora M. P. & Deng X. -D. (2013). Measurement of atmospheric stability index by monitoring radon natural radioactivity. China Environ. Sci. 33(4) 594–598.

  • 23. Avino P. Brocco D. Lepore L. & Pareti S. (2003). Interpretation of atmospheric pollution phenomena in relationship with the vertical atmospheric remixing by means of natural radioactivity measurements (radon) of particulate matter. Ann. Chim. 93(5/6) 589–594.

  • 24. Pitari G. De Luca N. Coppari E. Di Carlo P. & Di Genova G. (2015). Seasonal variation of night-time accumulated Rn-222 in central Italy. Environ. Earth Sci. 73(12) 8589–8597. DOI: 10.1007/s12665-015-4023-5.

  • 25. Bulko M. Holy K. & Mullerova M. (2018). On the relation between outdoor 222Rn and atmospheric stability determined by a modified Turner method. J. Environ. Radioact. 189 79–92.

  • 26. Cohen L. D. Barr. S. Krablin R. & Newstein H. (1972). Steady-state vertical turbulent diffusion of radon. J. Geophys. Res. 77 2654–2668.

  • 27. Fujinami N. & Osaka S. (1987). Variations in radon 222 daughter concentrations in surface air with atmospheric stability. J. Geopys. Res.-Atmos. 92(d1) 1041–1043.

  • 28. Perrino C. Pietrodangelo A. & Febo A. (2001). An atmospheric stability index based on radon progeny measurements for the evaluation of primary urban pollution. Atmos. Environ. 35 5235–5244.

  • 29. Perrino C. (2012). Natural radioactivity from radon progeny as a tool for the interpretation of atmospheric pollution events. In Sources and measurements of radon and radon progeny applied to climate and air quality studies (pp. 151–159). Vienna: International Atomic Energy Agency. (IAEA Proceedings Series).

  • 30. Pal S. Lopez M. Schmidt M. Ramonet M. Gibert F. Xueref-Remy I. & Ciais P. (2015). Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France. J. Geophys. Res.-Atmos. 120 623–643. DOI: 10.1002/2014JD022322.

  • 31. Williams A. G. Zahorowski W. Chambers S. D. Griffiths A. Hacker J. M. Element A. & Werczynski S. (2011). The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers. J. Atmos. Sci. 68 155–174. DOI: 10.1175/2012JAS3576.1.

  • 32. Pal S. (2014). Monitoring depth of shallow atmospheric boundary layer to complement LiDAR measurements affected by partial overlap. Remote Sens. 6(9) 8468–8493.

  • 33. Wang F. Chambers S. D. Zhang Z. Williams A. G. Deng X. Zhang H. Lonati G. Crawford J. Griffiths A. D. Ianniello A. & Allegrini I. (2016). Quantifying stability influences on air pollution in Lanzhou China using a radon-based “stability monitor”: seasonality and extreme events. Atmos. Environ. 145 376–391.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 276 224 6
PDF Downloads 152 110 2