Radiation processing for cultural heritage preservation – Romanian experience


Radiation sterilization has been considered a mass decontamination technique for biodegradable cultural heritage (CH) since its widespread application in the medical field. Initial experiments have revealed advantages, for example, efficiency and effectiveness, but also disadvantages, namely “side effects” concerning CH materials. More than 50 years later, the adequacy of ionizing radiation for some CH artefacts is still the subject of discussion. The main reason why is that science and industry are not yet able to provide a more efficient technique for treating mass decontamination. For wooden items, there is general agreement that the irradiation dose required for insect eradication is not damaging, even in the case of polychromed wood. For cellulose pulp (paper), there is a reduction in polymerization degree (DP) at the high doses necessary to stop the attack of fungi, but this should be considered taking into account the purpose of the treatment. Emergency or rescue treatments are necessary to mitigate the consequences of accidents or improper storage conditions. In some cases (archives), the value of written information is greater than the historical value of the paper support. For other materials, namely textiles, leather and parchment, less research has been published on the effect of ionizing radiation treatment. As a general rule, irradiation is not necessary when only a few CH elements are present that are affected by biological contamination since restorers can solve the problem by classical means. The need for radiation treatment arises when large collections (hundreds, thousands or even more elements) are heavily affected by the biological attack. In Romania, the IRASM gamma irradiator of IFIN-HH is receiving an increasing number of requests for CH treatment, mainly due to an intensive research programme concerning this topic and close liaison with CH owners or administrators. Besides reviewing the scientific results obtained in Romania and abroad, this paper presents some examples from experiences in Romania.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Butterfield, F. J. (1987). The potential long-term effects of gamma irradiation of paper. Stud. Conserv., 32(4), 181–191.

  • 2. Calvini, P., & Santucci, L. (1978). Alcuni dati sugli effetti dell’ irradiazione gamma sulla carta. Boll. Inst. Centr. Patolog. Libro35, 55–62.

  • 3. Adamo, M., Giovannotti, M., Magaudda, G., Plossi Zappalà, M., Rocchetti, F., & Rossi, G. (1998). Effect of gamma rays on pure cellulose paper as a model for the study of a treatment of biological recovery of biodeteriorated books. Restaur.-Int. J. Preserv. Libr. Arch. Mater.19, 41–59. https://doi.org/10.1515/rest.1998.19.1.41.

  • 4. Adamo, M., Brizzi, M., Magaudda, G., Martinelli, G., Plossi-Zappalà, M., Rocchetti, F., & Savagnone, F. (2001). Gamma radiation treatment of paper in different environmental conditions: Chemical, physical and microbiological analysis. Restaur.-Int. J. Preserv. Libr. Arch. Mater.22, 107–131. DOI: 10.1515/REST.2001.107.

  • 5. Adamo, M., Magaudda, G., Trionfetti Nisini, P., & Tronelli, G. (2003). Susceptibility of cellulose to attack by cellulolytic microfungi after gamma irradiation and ageing. Restaur.-Int. J. Preserv. Libr. Arch. Mater.24, 145–151. DOI: 10.1515/REST.2003.145.

  • 6. Adamo, M., & Magaudda, G. (2003). Susceptibility of printed paper to attack of chewing insects after gamma irradiation and ageing. Restaur.-Int. J. Preserv. Libr. Arch. Mater.24, 95–105. DOI: 10.1515/REST.2003.95.

  • 7. Adamo, M., Magaudda, G., & Tata, A. (2004). Radiation technology for cultural heritage restoration. Restaur.-Int. J. Preserv. Libr. Arch. Mater.25, 159–170.

  • 8. Adamo, M., Magaudda, G., & Rochetti, F. (2007). The effect of gamma radiation on acidified and artificially aged paper. Restaur.-Int. J. Preserv. Libr. Arch. Mater.28, 227–238.

  • 9. Adamo, M., Magaudda, G., & Omarini, S. (2007). Biological measurement of damage occurring to the inner structure of paper after gamma rays irradiation. Restaur.-Int. J. Preserv. Libr. Arch. Mater.28, 38–46.

  • 10. Almeida, M. O., Barbosa, P. S. M., Boaratti, M. F. G., & Borrely, S. I. (2009). Radiation effects on the integrity of paper. Radiat. Phys. Chem., 78(7/8), 489–492.

  • 11. Area, M. C., Calvo, A. M., Felissia, F. E., Docters, A., Miranda, M., & Raverta, V. (2012). Influencia de la dosis de radiación y la tasa de dosis sobre las propiedades físicas de papeles comerciales usados en Bibliotecas y Archivos. Proceedings of the 45. Congresso Internacional de Celulose e Papel da ABTCP/VII Congresso Ibero-Americano de Pesquisa de Celulose e Papel. October, 9–11, 2012, Sao Paulo, Brazil.

  • 12. Area, M. C., Calvo, A. M., Felissia, F. E., Docters, A., & Miranda, M. V. (2014). Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives. Radiat. Phys. Chem., 96, 217–222.

  • 13. Baccaro, S., Carewska, M., Casieri, C., Cemmi, A., & Lepore, A. (2013). Structure modifications and interaction with moisture in γ-irradiated pure cellulose by thermal analysis and infrared spectroscopy. Polym. Degrad. Stabil.98, 2005–2010.

  • 14. Borrely, S. I., Barbosa, P. S. M., & D'Almeida, M. L. O. (2009). Radiation application for paper preservation: Gamma irradiation at eucalyptus pulp sheets. In International Nuclear Atlantic Conference INAC, September 27 – October 2, 2009. Rio de Janeiro, Brazil, Associação Brasileira de Energia Nuclear – ABEN.

  • 15. Gonzalez, M. E., Calvo, A. M., & Kairiyama, E. (2002). Gamma radiation for preservation of biologically damaged paper. Radiat. Phys. Chem., 63(3/6), 263–265.

  • 16. Magaudda, G., Adamo, M., Pasquali, A., & Rossi, G. (2000). The effect of ionizing gamma ray radiation on the biology of the Periplaneta Americana. Restaur.- Int. J. Preserv. Libr. Arch. Mater.21, 41–54.

  • 17. Magaudda, G., Adamo, M., & Rochetti, F. (2001). Damage caused by destructive insects to cellulose previously subjected to gamma-ray irradiation and artificial ageing. Restaur.-Int. J. Preserv. Libr. Arch. Mater.21, 242–250.

  • 18. Magaudda, G. (2004). The recovery of bio-deteriorated books and archive documents through gamma radiation – some considerations on the results achieved. J. Cult. Herit.5(1), 113–118. DOI: 10.1016/j.culher.2003.07.003.

  • 19. Moise, I. V., Virgolici, M., Negut, D., Manea, M., Alexandru, M., Trandafir, L., Zorila, F. L., Talasman, C. M., Manea, D., Nisipeanu, S., Haiducu, M., & Balan, Z. (2012). Establishing the irradiation dose for paper decontamination. Radiat. Phys. Chem., 81, 1045–1050.

  • 20. Moise, I. V., Staculescu, I., & Meltzer, V. (2014). Thermogravimetric and calorimetric study of cellulose paper at low dose irradiation. J. Therm. Anal. Calorim.115, 1417–1425.

  • 21. Dettino, B. M. A. (2007). Tratamento de salvaguarda em situação de emergência: a atuação do IEB em acervo cedido pela Justiça Federal de São Paulo - USP, Revista do ieb no. 44.

  • 22. El-Esseily, A. S., & Inaba, M. (2004). Gamma irradiation of Washi. Part 2*: Changes in degree of polymerization and crystallinity of cellulose. Restaur.-Int. J. Preserv. Libr. Arch. Mater.25(1), 40–46.

  • 23. Manea, M. M., Negut, C. D., Stanculescu, I. R., & Ponta, C. C. (2012). Radiation effects on canvas oil painting: spectroscopic observations. Radiat. Phys. Chem., 81, 1595–1599.

  • 24. Manea, M. M., Moise, I. V., Virgolici, M., Negut, C. D., Barbu, O. H., Cutrubinis, M., Fugaru, V., Ioana, R., Stanculescu, I. R., Corneliu, C., Pont Stanculescu, I. R., & Ponta, C. C. (2012). Spectroscopic evaluation of painted layer structural changes induced by gamma radiation in experimental models. Radiat. Phys. Chem., 81, 160–167.

  • 25. Negut, C. D., Bercu, V., & Duliu, O. G. (2012). Defects induced by gamma irradiation in historical pigments. J. Cult. Herit.13, 397–403.

  • 26. Bicchieri, M., Monti, M., Piantanida, G., & Sodo, A. (2016). Effects of gamma irradiation on deteriorated paper. Radiat. Phys. Chem., 125, 21–26.

  • 27. Csupor, K., & et al. (2000). Radiation induced effects on wood materials and fungi. In Proceedings of the 12th International Symposium on Nondestructive Testing of Wood, University of Western Hungary, Sopron, 13–15 September 2000.

  • 28. Kunstadt, P. (1998). Radiation disinfestation of wood products. Radiat. Phys. Chem., 52(1/6), 617–623.

  • 29. Ponta, C. C. (2008). Irradiation conservation of cultural heritage. Nucl. Phys. News18(1), 22–24.

  • 30. Ramiere, R. (1982). Protection de l’environnement culturel par les techniques nucléaires. In Industrial application of radioisotopes and radiation technology (Grenoble, 28 Sep. – 2 Oct. 1981). Vienna: IAEA. (Proceedings Series STI/PUB/598).

  • 31. Severin, L. C., Lahr, F. A. R., Bardi, M. A. G., Santos, A. C., & Machado, L. D. B. (2010). Influence of gamma radiation on properties of common Brazilian wood species used in art-work. Progress in Nuclear Energy52, 730–734.

  • 32. Sendrea, C., Badea, E., Stanculescu, I., Miu, L., & Iovu, H. (2015). Dose-dependent effects of gamma irradiation on collagen in vegetable tanned leather by mobile NMR spectroscopy. Leather and Footwear Journal15, 139–150.

  • 33. Nunes, I., Nuno Mesquita, N., Cabo Verde, S., Trigo, M. J., Ferreira, A., Carolino, M. M., Portugal, A., & Botelho, M. L. (2012). Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax. Radiat. Phys. Chem., 81(12), 1943–1946.

  • 34. Geba, M., Lisa, G., Ursescu, C. M., Olaru, A., Spiridon, I., Leon, A. L., & Stanculescu, I. (2014). Gamma irradiation of protein-based textiles for historical collections decontamination. J. Therm. Anal. Calorim., 118, 977–985.

  • 35. Mitran, A., Ponta, C. C., & Danis, A. (2002). Traitement antimicrobien des films cinématographiques au moyen du rayonnement gamma. La conservation à l’ère du numérique – Actes des quatrièmes journées internationales d’études de l’ARSAG, 27–30 mai, Paris. Groupe Liénart Press.

  • 36. International Atomic Energy Agency. (2017). Uses of ionizing radiation for conservation of tangible cultural heritage. Vienna: IAEA. (Radiation Technology Series No. 6. STI/PUB/1747).

  • 37. Paun, J., Oprea, F., & Goldhaar, I. (1978). Folosirea radiatiilor gamma pentru dezinfectia documentelor de arhiva. Revista Arhivelor, 1, 79–82.

  • 38. ISO/ASTM 51538:2009 Practice for use of the ethanol-chlorobenzene dosimetry system. International Organization for Standardization.

  • 39. Havermans, J., Marres, P., & Defize, P. (1999). The development of a universal procedure for archive assessment. Restaur.-Int. J. Preserv. Libr. Arch. Mater.20(1), 48–55.

  • 40. Capiau, S., de Valk, M., & Wuyts, E. (2015). The universal procedure for library assessment: A statistical model for condition surveys of special collections in libraries. IFLA Journal41(3), 265–271.

  • 41. Silva, M., Moraes, A. M. L., Nishikawaa, M. M., Gattic, M. J. A., Vallim de Alencard, M. A., Brandao, L. E., & Nobrega, A. (2006). Inactivation of fungi from deteriorated paper materials by radiation. Int. Biodeterior. Biodegrad.57, 163–167.

  • 42. Trandafir, L., Zorila, F., Alexandru, M., Ene, M., Constantin, M., Alistar, A., Cutrubinis, M., Iordache, O., & Stanculescu, I. (2014). Radioresistance of biodegradation fungi and its importance in establishing the decontamination dose. In Proceedings of 5. ICAMS International Conference on Advanced Materials and Systems, 23–25 October 2014 (pp. 561–566). Bucharest, Romania.


Journal + Issues