Structural properties of Mn-substituted hercynite

Ilona Jastrzębska 1 , Wiktor Bodnar 2 , Kerstin Witte 2 , Eberhard Burkel 2 , Paweł Stoch 1  and Jacek Szczerba 1
  • 1 Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 , Kraków, Poland
  • 2 Physics of New Materials, Institute of Physics, Faculty of Mathematics and Natural Sciences, University of Rostock, 23 Albert-Einstein-Str., 18059 , Rostock, Germany

Abstract

In this work spinel series with the general formula Fe1-xMnxAl2O4 (where x = 0, 0.3, 0.5 and 0.7) were synthesized and characterized with respect to their structure and microstructure. X-ray diffractometry (XRD) was used to identify the phase composition that revealed a single phase spinel material. Rietveld refinements of the XRD patterns were carried out in order to determine the lattice and oxygen positional parameters of the spinel compounds. Mössbauer effect measurements were performed at room temperature to determine the local chemical environment of the Fe ions, their valences, and degrees of spinels inversion. It was shown that an increase in the Mn content led to a decrease in the ratio of Fe2+ to Fe3+. The results obtained from Mössbauer spectroscopy (MS) were used to establish the chemical formulas of the synthesized spinels. Finally, the microstructure that was observed using scanning electron microscopy (SEM) showed a compact microstructure with an octahedral crystal habit.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Sickafus, K. E., Wills, J. M., & Grimes, N. W. (1999). Structure of spinel. J. Am. Ceram. Soc., 82(12), 3279-3292. DOI: 10.1111/j.1151-2916.1999. tb02241.x.

  • 2. Amirkhanyan, L., Weissbach, T., Kortus, J., & Aneziris, Ch. G. (2013). On the possibility of hercynite formation in a solid state reaction at the Al2O3-iron interface: A density-functional theory study. Ceramics Int., 40(1, Pt. A), 257-262.

  • 3. Verwey, E. J. W., & Heilmann, E. L. (1947). Physical properties and cation arrangement of oxides with spinel structures. I. Cation arrangements in spinels. J. Chem. Phys., 15, 174-180. DOI: 10.1063/1.1746464.

  • 4. Blaney, L. (2007). Magnetite (Fe3O4): Properties, synthesis, and applications. Leigh Review, 15, 33-81. http://preserve.lehigh.edu/cas-lehighreview-vol-15/5.

  • 5. Essene, E. J., & Peacor, D. R. (1983). Crystal chemistry and petrology of coexisting galaxite and jacobsite and other spinel solutions and solvi. Am. Miner., 68, 449-455.

  • 6. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32, 751-767.

  • 7. Jastrzębska, I., Szczerba, J., & Stoch, P. (2017). Structural and microstructural study on the arc-plasma synthesized (APS) FeAl2O4-MgAl2O4 transitional refractory compound. High Temp. Mater. Process., 36(3), 299-304. DOI: 10.1515/htmp-2015-0252.

  • 8. Turnock, A. C., & Eugster, H. P. (1962). Fe-Al oxides: phase relations below 1000oC. J. Petrol., 3, 533-565.

  • 9. Turnock, A. C., & Lindsley, D. H. (1961). Fe-Al and Fe-Ti spinels and related oxides. In Year Book Carnegie Institution of Washington (vol. 60, pp. 152-157). Washington, D.C.: Carnegie Institution of Washington.

  • 10. Cremer, V. (1969). Die Mischkristallbildung im System Chromit-Magnetit-Hercynit zwischen 1000° und 500°C. Neues Jahrb. Mineral. Abh., 111(2), 184-205.

  • 11. Hålenius, U., Bosi, F., & Skokby, H. (2007). Galaxite, MnAl2O4, a spectroscopic standard for tetrahedrally coordinated Mn2+ in oxygen-based mineral structures. Am. Miner., 92, 1225-1231.

  • 12. Fischer, W. A., & Hoffmann, A. (1956). Das Zustandsschaubild Eisenoxydul-Aluminiumoxyd. Arch. Eisenhuettenwes. 27(5), 343-346.

  • 13. Jacob, K. T. (1981). Revision of thermodynamic data on MnO-Al2O3 melts. Can. Metall. Q., 20(1), 89-92. DOI: http://dx.doi.org/10.1179/cmq.1981.20.1.89.

  • 14. Jastrzębska, I., Szczerba, J., Błachowski, A., & Stoch, P. (2017). Structure and microstructure evolution of hercynite spinel (Fe2+Al2O4) after annealing treatment. Eur. J. Mineral., 29(1), 63-72. DOI: 10.1127/ejm/2017/0029-2579.

  • 15. Liu, G., Li, N., Yan, W., Tao, G., & Li, Y. (2012). Composition and structure of a composite spinel made from magnesia and hercynite. J. Ceram. Proc. Res., 13(4), 480-485.

  • 16. Gelbmann, G., Krischanitz, R., & Jörg, S. (2013). Hybrid spinel technology provides performance advances for basic cement rotary kiln bricks. RHI Bull., 2, 10-12.

  • 17. Woodland, A. B., & Wood, B. J. (1990). The breakdown of hercynite at low fO2. Am. Miner., 75, 1342-1348.

  • 18. Bromiley, G. D., Gatta, G. D., & Stokes, T. (2015). Manganese incorporation in synthetic hercynite. Miner. Mag., 79(3), 635-647. DOI: 10.1180/minmag.2015.079.3.09.

  • 19. Jastrzębska, I., & Szczerba, J. (2015). Non-conventional method of ceramic preparation - arc plasma synthesis (APS). In: X Krakow Conference of Young Scientists, KKMU Symposia and Conferences 10, 24-26 September 2015 (pp. 9-10). Krakow: AGH University of Science and Technology.

  • 20. Jastrzębska, I., Szczerba, J., Stoch, P., Błachowski, A., Ruebenbauer, K., Prorok, R., & Śnieżek, E. (2015). Crystal structure and Mössbauer study of FeAl2O4. Nukleonika, 60(1), 47-49. DOI: 10.1515/nuka-2015-0012.

  • 21. Degen, T., Sadki, M., Bron, E., König, U., & Nénert, G. (2014). The HighScore suite. Powder Diffr., 29, S13-S18. DOI: http://dx.doi.org/10.1017/S0885715614000840.

  • 22. Lutterotti, L., Matthies, S., & Wenk, H. R. (1999). MAUD (Material Analysis Using Diffraction): A user friendly Java program for Rietveld texture analysis and more. In: Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM-12), 9-13 August 1999, McGill University, Montreal, Canada (vol. 1, p. 1599). Ottawa: National Research Press.

  • 23. Prisecaru, I. (2009-2016). WMOSS4 Mössbauer Spectral Analysis Software. Available from http://www.wmoss.org.

  • 24. Hill, R. J. (1984). X-ray powder diffraction profi le refi nement of synthetic hercynite. Am. Miner., 69, 937-942.

  • 25. Lucchesi, S., Russo, U., & Della Giusta, A. (1997). Crystal chemistry and cation distribution in some Mn-rich natural and synthetic spinels. Eur. J. Mineral., 9, 31-42. DOI: 10.1127/ejm/9/1/0031.

  • 26. O’Neill, H., Hugh, St. C., & Navrotsky, A. (1983). Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution. Am. Miner., 68, 181-194.

  • 27. Dézsi, I., Szűcs, I., & Sváb, E. (2000). Mössbauer spectroscopy of spinels, J. Radiat. Nucl. Chem., 246(1), 15-19. DOI: 10.1023/A:1006796022996.

  • 28. Larsson, L., O’Nei ll, H., & Annersten, H. (1994). Crystal chemistry of synthetic hercynite (FeAl2O4) from XRD structural refi nements and Mössbauer spectroscopy. Eur. J. Mineral., 6, 39-51. DOI: 10.1127/ejm/6/1/0039.

  • 29. Muan, A., & Gee, C. L. (1956). Phase equilibrium studies in the system iron oxide Al2O3 in air and at 1 atm O2 pressure. J. Am. Ceram. Soc., 39(6), 207-214. DOI: 10.1111/j.1151-2916.1959.tb13581.x.

  • 30. Menegazzo, G., Carbonin, S., & Della Giusta, A. (1997). Cation and vacancy distribution in an artificially oxidized natural spinel. Mineral. Mag., 61, 411-421. DOI: 10.1180/minmag.1997.061.406.07.

  • 31. Jagodzinski, H., & Saalfeld, H. (1958). Cation distribution and structural relations in Mg-Al spinels. Z. Kristallogr., 110(3), 197-218. DOI: 10.1524/zkri.1958.110.16.197. (in German).

  • 32. Sheldon, R. I., Hartmann, T., Sickafus, K. E., Ibarra, A., Scott, B. L., Argyriou, D. N., Larson, A. C., & Von Dreel, R. B. (1999). Cation disorder and vacancy distribution in nonstoichiometric magnesium aluminate spinel, MgO·xAl2O3. J. Am. Ceram. Soc., 82(12), 3293-3298. DOI: 10.1111/j.1151-2916.1999.tb02242.x.

  • 33. Brice, J. C. (1986). Crystal growth processes. New York: Wiley. DOI: 10.1002/crat.2170220103.

  • 34. Roy, B. N. (1992). Crystal growth from melts. Applications to growth of groups 1 and 2 crystals. New York: Wiley. DOI: 10.1002/crat.2170270615.

OPEN ACCESS

Journal + Issues

Search