Crystal structure and Mössbauer effect in multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5)O3 solid solution

Open access


Multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5)O3 solid solution is a material that exhibits ferroelectric and antiferromagnetic orderings in ambient temperature. The solid solution was obtained as a result of a conventional reaction in a solid state. The obtained material is a dense, fine-grained sinter whose surface was observed by scanning electron microscopy (SEM) and stoichiometry was confirmed by energy dispersive X-ray spectroscopic (EDS) analysis. According to the X-ray powder diffraction (XRD) measurements, the main phase is R3c space group with admixture of Pm-3m regular phase. Small contribution of pyrochlore-like phase was also observed. Mössbauer spectroscopy suggested random distribution of Fe3+/Ta5+ cations in the B sites of ABO3 compound. Reduction of the magnetic hyperfine field with an increase in the substitution of Ta5+ in Fe3+ neighbourhood was also observed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Scott J. F. (2007). Data storage: Multiferroic memories. Nat. Mater. 6 256-257. DOI: 10.1038/nmat1868.

  • 2. Paik H. Hwang H. No K. Kwon S. & Cann D. P. (2007). Room temperature multiferroic properties of single-phase (Bi0.9La0.1)FeO3-Ba(Fe0.5Nb0.5)O3 solid solution ceramics. Appl. Phys. Lett. 90 042908. DOI: 10.1063/1.2434182.

  • 3. Yuan G. L. Or S. W. Liu J. M. & Liu Z. G. (2006). Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 89 052905. DOI: 10.1063/1.2266992.

  • 4. Zhang S. T. Zhang Y. Lu M. H. Du C. L. Chen Y. F. Liu Z. G. Zhu Y. Y. Ming N. B. & Pan X. Q. (2006). Substitution-induced phase transition and enhanced multiferroic properties of BiLaFeO ceramics. Appl. Phys. Lett. 88 162901. DOI: 10.1063/1.2195927.

  • 5. Yang Y. Liu J. M. Huang H. B. Zuo W. Q. Bao P. & Liu Z. G. (2004). Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)O3 single crystals. Phys. Rev. B 70 132101-132105. DOI: 10.1103/PhysRevB.70.132101.

  • 6. Kulawik J. & Szwagierczak D. (2007). Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics. J. Eur. Ceram. Soc. 27 2281-2286. DOI: 10.1016/j.jeurceramsoc.2006.07.010.

  • 7. Wang J. Neaton J. B. Zheng H. Nagarajan V. Ogale S. B. Liu B. Viehland D. Vaithyanathan V. Schlom D. G. Waghmare U. V. Spaldin N. A. Rabe K. M. Wuttig M. & Ramesh R. (2003). Epitaxial BiFeO3 multiferroic thin fi lm heterostructures. Science 299 1719-1722. DOI: 10.1126/science.1080615.

  • 8. Lampis N. Sciau P. & Lehmann A. G. (2000). Rietveld refi nements of the paraelectric and ferroelectric structures of PbFe0.5Ta0.5O3. J. Phys.-Condens. Matter 12(11) 2367-2378. DOI: 10.1088/0953-8984/12/11/303.

  • 9. Nomura S. Takabayashi H. & Nakagawa T. (1968). Dielectric and magnetic properties of Pb(Fe1/2Ta1/2)O3. Jpn. J. Appl. Phys. 7 600-604. DOI: 10.1143/JJAP.7.600.

  • 10. Falqui A. Lampis N. Geddo-Lehmann A. & Pinna G. (2005). Low temperature magnetic behavior of perovskite compounds PbFe1/2Ta1/2O3 and PbFe1/2Nb1/2O3. J. Phys. Chem. 109 22967-22970. DOI: 10.1080/00150193.2014.923682.

  • 11. Martinez R. Palai R. Huhtinen H. Liu J. Scott J. F. & Katiyar R. S. (2010). Nanoscale ordering and multiferroic behavior in PbFe1/2Ta1/2O3. Phys. Rev. B 82 134104-1-134104-134110. DOI: 10.1103/PhysRevB.82.134104.

  • 12. Kubrin S. P. Raevskaya S. I. Kuropatkina S. A. Raevski I. P. & Sarychev D. A. (2006). Dielectric and Mössbauer studies of B-cation order-disorder effect on the properties of Pb(Fe1/2Ta1/2)O3 relaxorferroelectric. Ferroelectrics 340 155-159. DOI: 10.1080/00150190600889239.

  • 13. Gilleo M. A. (1960). Superexchange interaction in ferromagnetic garnets and spinels which contain randomly incomplete linkages. J. Phys. Chem. Solids 13 33-39. DOI: 10.1016/0022-3697(60)90124-4.

  • 14. Kleemann W. Shvartsman V. V. Borisov P. & Kania A. (2010). Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys. Rev. Lett. 105 257202-1-257202-4. DOI: 10.1103/PhysRevLett.105.257202.

  • 15. Raevski I. P. Kubrin S. P. & Raevskaya S. I. (2012). Magnetic properties of PbFe1/2Nb1/2O3: Mössbauer spectroscopy and fi rst principles calculations. Phys. Rev. B 85 224412-1-224412-5. DOI: 10.1103/Phys-RevB.85.224412.

  • 16. Laguta V. V. Rosa J. & Jastrabik L. (2010). 93Nb NMR and Fe3+ EPR study of local magnetic properties of disordered magnetoelectric PbFe1/2Nb1/2O3. Mater. Res. Bull. 45 1720-1727. DOI: 10.1016/j.materresbull.2010.06.060.

  • 17. Kulawik J. & Szwagierczak D. (2007). Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics. J. Eur. Ceram. Soc. 27 2281-2286. DOI: 10.1016/j.jeurceramsoc.2006.07.010.

  • 18. Wang K. F. Liu J. M. & Ren Z. F. (2009). Multiferroicity. The coupling between magnetic and polarization. Adv. Phys. 58 321-448. DOI: 10.1080/00018730902920554.

  • 19. Rodríguez-Carvajal J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192 55-69. DOI: 10.1016/0921-4526(93)90108-I.

  • 20. Lu J. Qiao L. J. Fu P. Z. & Wu Y. C. (2011). Phase equilibrium of Bi2O3-Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal. J. Cryst. Growth 318 936-941. DOI: 10.1016/j.jcrysgro.2010.10.181.

  • 21. Zachariasz P. Stoch A. Stoch P. & Maurin J. (2013). Hyperfi ne interactions in xBi0.95Dy0.05FeO3-(1-x)Pb(Fe2/3W1/3)O3 multiferroics. Nukleonika 58(1) 53-56.

  • 22. Ivanov S. A. Nordblad P. Tellgren R. Ericsson T. & Rundlof H. (2007). Structural magnetic and Mössbauer spectroscopic investigations of the magnetoelectric relaxor Pb(Fe0.6W0.2Nb0.2)O3. Solid State Sci. 9 440-450. DOI: 10.1016/j.solidstatesciences.2007.03.018.

  • 23. Blanco M. C. Franco D. G. Jalit Y. Pannunzio Miner E. V. Berndt G. Paesano Jr. A. Nieva G. & Carbonio R. I. E. (2012). Synthesis magnetic properties and Mössbauer spectroscopy for the pyrochlore family Bi2BB’O7 with B = Cr and Fe and B’ = Nb Ta and Sb. Physica B 407 3078-3080. DOI: 10.1016/j.physb.2011.12.029.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 282 140 1
PDF Downloads 90 53 0