Degradation and detoxification of 2-chlorophenol aqueous solutions using ionizing gamma radiation


Chlorophenols are compounds with high toxicity, poor biodegradability, and carcinogenic and recalcitrant properties. This work studies, for the first time, the destruction and detoxification of 2-chlorophenol (2-CP) in water using 60Co gamma radiation under different conditions including varied radiation doses, addition of hydrogen peroxide (H2O2), and varied pH values. High-performance liquid chromatography (HPLC) and ion chromatography (IC) confirmed a successful degradation of 2-CP to primarily yield phenol molecules and chloride anions. A radiation dose as low as 25 kGy achieved approximately 90% removal of 50–150 ppm of 2-CP in neutral water. However, the addition of a strong oxidizer such as H2O2 to 2-CP solutions reduced the required dose to achieve 90% removal to at least 1.3-fold. The reduction in radiation doses was also observed in acidic and alkaline media, reducing the required doses of 90% removal to at least 0.4-fold. It was imperative to study the toxicity levels of the oxidation by-products to provide directions for the potential applicability of this technology in water treatment. Toxicology Microtox® bioassay indicated a significant reduction in the toxicity of the degradation by-products and the detoxification was further enhanced by the addition of H2O2 and changing the pH to more acidic or alkaline conditions. These findings will contribute to the knowledge of the removal and detoxification of such challenging environmental contaminant and could be potentially applied to other biologically resistant compounds.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ.322(1/3), 21–39. DOI: 10.1016/j.scitotenv.2003.09.015.

  • 2. Michałowicz, J., & Duda, W. (2007). Phenols – sources and toxicity. Pol. J. Environ. Stud.16(3), 347–362. DOI: 10.105 PJ 12301485.

  • 3. Igbinosa, E. O., Odjadjare, E. E., Chigor, V. N., Igbinosa, I. H., Emoghene, A. O., Ekhaise, F. O., & Idemudia, O. G. (2013). Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J.2013, 1–11. DOI: Artn 460215\rDoi 10.1155/2013/460215.

  • 4. Boulding, J. R., & Ginn, J. S. (2004). Practical handbook of soil, vadose zone, and ground-water contamination: Assessment, prevention, and remediation (2nd ed.). Boca Raton: Lewis Publishers.

  • 5. Ettala, M., Koskela, J., & Kiesila, A. (1992). Removal of chlorophenols in a municipal sewage-treatment plant using activated-sludge. Water Res.26(6), 797–804. DOI: 10.1016/0043-1354(92)90011-r.

  • 6. Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas. (2009). Low-cost adsorbents: Growing approach to wastewater treatment – a review. Crit. Rev. Environ. Sci. Technol.39(10), 783–842. DOI: 10.1080/10643380801977610.

  • 7. Henze, M. (2008). Biological wastewater treatment: Principles, modelling and design. UK: IWA Publishing.

  • 8. Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res.39(19), 4797–4807. DOI: 10.1016/j.watres.2005.09.015.

  • 9. Cheremisinoff, N. P. (2002). Handbook of water and wastewater treatment technologies. Boston: Butterworth-Heinemann.

  • 10. Andreozzi, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today53(1), 51–59. DOI: 10.1016/S0920-5861(99)00102-9.

  • 11. Zhao, X. B., Wang, L., & Liu, D.-H. (2007). Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J. Chem. Technol. Biotechnol.82(5), 1115–1121. DOI: 10.1002/jctb.1775.

  • 12. Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int.35(2), 402–417. DOI: 10.1016/j.envint.2008.07.009.

  • 13. Badawy, M. I., Ghaly, M. Y., & Gad-Allah, T. A. (2006). Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination194(1/3), 166–175. DOI: 10.1016/j.desal.2005.09.027.

  • 14. Keen, O., & Linden, K. G. (2013). Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent. Environ. Sci. Technol.47(22), 13020–13030. DOI: 10.1021/es402472x.

  • 15. Azbar, N., Yonar, T., & Kestioglu, K. (2004). Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere55(1), 35–43. DOI: 10.1016/j.chemosphere.2003.10.046.

  • 16. Esplugas, S., Bila, D. M., Krause, L. G. T., & Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater.149(3), 631–642. DOI: 10.1016/j.jhazmat.2007.07.073

  • 17. Basfar, A. A., Mohamed, K. A., Al-Abduly, A. J., Al-Kuraiji, T. S., & Al-Shahrani, A. A. (2007). Degradation of diazinon contaminated waters by ionizing radiation. Radiat. Phys. Chem.76(8/9), 1474–1479. DOI: 10.1016/j.radphyschem.2007.02.055.

  • 18. Basfar, A. A., Mohamed, K. A., Al-Abduly, A. J., & Al-Shahrani, A. A. (2009). Radiolytic degradation of atrazine aqueous solution containing humic substances. Ecotox. Environ. Safe.72(3), 948–953. DOI: 10.1016/j.ecoenv.2008.05.006.

  • 19. Basfar, A. A., Khan, H. M., Al-Shahrani, A. A., & Cooper, W. J. (2005). Radiation induced decomposition of methyl tert-butyl ether in water in presence of chloroform: Kinetic modelling. Water Res.39(10), 2085–2095. DOI: 10.1016/j.watres.2005.02.019.

  • 20. Basfar, A. A., Khan, H. M., & Al-Shahrani, A. A. (2005). Trihalomethane treatment using gamma irradiation: Kinetic modeling of single solute and mixtures. Radiat. Phys. Chem.72(5), 555–563. DOI: 10.1016/j.radphyschem.2004.04.137.

  • 21. Pera-Titus, M., García-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: A general review. Appl. Catal. B-Environ.47(4), 219–256. DOI: 10.1016/j.apcatb.2003.09.010.

  • 22. Taghipour, F., & Evans, G. J. (1997). Radiolytic dechlorination of chlorinated organics. Radiat. Phys. Chem., 49(2), 257–264. DOI: 10.1016/S0969-806X(96)00065-5.

  • 23. He, Y., Liu, J., Lu, Y., & Wu, J. (2002). Gamma radiation treatment of pentachlorophenol, 2,4-dichlorophenol and 2-chlorophenol in water. Radiat. Phys. Chem.65(4/5), 565–570. DOI: 10.1016/S0969-806X(02)00364-X.

  • 24. Klanova, J., Klan, P., Heger, D., & Holoubek, I. (2003). Comparison of the effects of UV, H2O2/UV and γ-irradiation processes on frozen and liquid water solutions of monochlorophenols. Photochem. Photobiol. Sci.2(10), 1023–1031. DOI: 10.1039/b303483F.

  • 25. Shim, S. B., Jo, H. J., & Jung, J. (2009). Toxicity identification of gamma-ray treated phenol and chlorophenols. J. Radioanal. Nucl. Chem.280(1), 41–46. DOI: 10.1007/s10967-008-7388-z.

  • 26. Trojanowicz, M., Chudziak, A., & Bryl-Sandelewska, T. (1997). Use of reversed-phase HPLC with solid-phase extraction for monitoring of radiolytic degradation of chlorophenols for environmental protection. J. Radioanal. Nucl. Chem.224(1/2), 131–136. DOI: 10.1007/BF02034625.

  • 27. Miller, A. (2000). Techniques for high dose dosimetry in industry, agriculture and medicine. Radiat. Phys. Chem.58(3), 305. DOI: 10.1016/S0969-806X(99)00513-7.

  • 28. Jankowska, A., Biesaga, M., Drzewicz, P., Trojanowicz, M., & Pyrzyńska, K. (2004). Chromatographic separation of chlorophenoxy acid herbicides and their radiolytic degradation products in water samples. Water Res.38(14/15), 3259–3264. DOI: 10.1016/j.watres.2004.03.032.

  • 29. Lewins, J., & Becker, M. (1999). Advances in nuclear science and technology. New York: Springer.

  • 30. Weihua, S., Zheng, Z., Rami, A. S., Tao, Z., & Desheng, H. (2002). Degradation and detoxification of aqueous nitrophenol solutions by electron beam irradiation. Radiat. Phys. Chem.65(4/5), 559–563. DOI: 10.1016/S0969-806X(02)00365-1.

  • 31. Borrely, S. I., Sampa, M. H. O., Pedroso, C. B., Oikawa, H., Silveira, C. G., Cherbakian, E. H., & Santos, M. C. F. (2000). Radiation processing of wastewater evaluated by toxicity assays. Radiat. Phys. Chem.57(3/6), 507–511. DOI: 10.1016/S0969-806X(99)00418-1.

  • 32. Steinberg, S. M., Poziomek, E. J., Engelmann, W. H., & Rogers, K. R. (1995). A review of environmental applications of bioluminescence measurements. Chemosphere30(11), 2155–2197. DOI: 10.1016/0045-6535(95)00087-O.

  • 33. Zona, R., Schmid, S., & Solar, S. (1999). Detoxification of aqueous chlorophenol solutions by ionizing radiation. Water Res.33(5), 1314–1319. DOI: 10.1016/S00431354(98)00319-4.

  • 34. Yang, R., Wang, M., Shen, Z., Wang, W., Ma, H., & Gu, J. (2007). The degradation and mineralization of 4-chlorophenol in aqueous solutions by electron beam irradiation in the presence of TiO2 nanoparticles. Radiat. Phys. Chem.76(7), 1122–1125. DOI: 10.1016/j.radphyschem.2006.10.008.

  • 35. Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res.8(3/4), 501–551. DOI: 10.1016/S1093-0191(03)00032-7.

  • 36. Schmid, S., Krajnik, P., Quint, R. M., & Solar, S. (1997). Degradation of monochlorophenols by γ-irradiation. Radiat. Phys. Chem.50(5), 493–502. DOI: 10.1016/S0969-806X(97)00075-3.

  • 37. Torun, M., Abbasova, D., Solpan, D., & Guven, O. (2014). Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation. Nukleonika59(1), 25–35. DOI: 10.2478/nuka-2014-0004.

  • 38. Getoff, N., & Solar, S. (1986). Radiolysis and pulse radiolysis of chlorinated phenols in aqueous solutions. Int. J. Radiat. Appl. Instrum. Part C-Radiat. Phys. Chem.28(5/6), 443–450. DOI: 10.1016/1359-0197(86)90165-7.

  • 39. Parvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int.32(2), 265–268. DOI: 10.1016/j.envint.2005.08.022.

  • 40. Stafford, U., Gray, K. A., & Kamat, P. V. (1994). Radiolytic and TiO2-assisted photocatalytic degradation of 4-chlorophenol. A comparative study. J. Phys. Chem.98(25), 6343–6351. DOI: 10.1021/j100076a019.

  • 41. Trojanowicz, M., Drzewicz, P., Pańta, P., Gluszewski, W., Nalecz-Jawecki, G., Sawicki, J., Szewczyńska, M. (2002). Radiolytic degradation and toxicity changes in γ-irradiated solutions of 2,4-dichlorophenol. Radiat. Phys. Chem.65(4/5), 357–366. DOI: 10.1016/S0969-806X(02)00336-5.


Journal + Issues