Radiocatalytic degradation of dissolved organic compounds in wastewater

Open access


Wastewater containing a high concentration of organic substances was exposed to gamma radiolysis in the presence and absence of a catalyst (TiO2); radiolysis and radiocatalysis were performed by means of continuous and discontinuous irradiation. Dissolved organic carbon (DOC) was the parameter used to estimate the concentration of organic compounds without interference by the high mineral content. The data was well fitted to the pseudo-first-order kinetic model of Langmuir-Hinshelwood. From a [DOC]0 = 140 ± 7 mg/L, the higher DOC degradation (74%) and apparent rate constant (Kapp = 0.083 h-1) were found using discontinuous radiocatalysis. This process could be an alternative method of treatment of industrial or municipal wastewater

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ribeiro A. R. Nunes O. C. Pereira M. F. R. & Silva A. M. T. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defi ned in the recently launched Directive 2013/39/EU. Environ. Int. 75 33-51. DOI: 10.1016/j.envint.2014.10.027.

  • 2. Luo Y. Guo W. Ngo H. H. Nghiem L. D. Hai F. I. Zhang J. Liang S. & Wang X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473/474 619-641. DOI: 10.1016/j.scitotenv.2013.12.065.

  • 3. Matilainen A. & Sillanpää M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 80 351-365. DOI: 10.1016/j.chemosphere.2010.04.067.

  • 4. Bao H. Liu Y. & Jia H. (2002). A study of irradiation in the treatment of wastewater. Radiat. Phys. Chem. 63 633-636. DOI: 10.1016/S0969-806X(01)00619-3.

  • 5. Kimura A. Taguchi M. Ohtani Y. Shimada Y. Hiratsuka H. & Kojima T. (2007). Treatment of wastewater having estrogen activity by ionizing radiation. Radiat. Phys. Chem. 76 699-706. DOI: 10.1016/j.radphyschem.2006.04.005.

  • 6. Chmielewski A. G. & Haji-Saeid M. (2004). Radiation technologies: past present and future. Radiat. Phys. Chem. 71 17-21. DOI: 10.1016/j.radphyschem. 2004.05.040.

  • 7. González-Juárez J. C. Jiménez-Becerril J. & CejudoÁlvarez J. (2010). Degradation of 4-chlorophenol by gamma radiation of 137Cs and X-rays. J. Mex. Chem. Soc. 54 157-159. Available from

  • 8. Velo-Gala I. López-Peñalver J. J. Sánchez-Polo M. & Rivera-Utrilla J. (2014). Role of activated carbon on micropollutans degradation by ionizing radiation. Carbon 67 288-299. DOI: 10.1016/j. carbon.2013.09.091.

  • 9. Abdel daiem M. M. Rivera-Utrilla J. Ocampo-Pérez R. Sánchez-Polo M. & López-Peñalver J. J. (2013). Treatment of water contaminated with diphenolic acid by gamma radiation in the presence of different compounds. Chem. Eng. J. 219 371-379. DOI: 10.1016/j.cej.2012.12.069.

  • 10. American Public Health Association. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: APHA.

  • 11. Weishaar J. L. Aiken G. R. Bergamaschi B. A. Fram M. S. Fujii R. & Mopper K. (2003). Evaluation of specifi c ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37 4702-4708. DOI: 10.1021/es030360x.

  • 12. Potter B. B. & Wimsatt J. C. (2005 February). Determination of total organic carbon and specifi c UV absorbance at 254 nm in source water and drinking water. Revision 1.1. Method 415.3. Cincinnati: US EPA. (EPA/600/R-05/055).

  • 13. Jiménez-Reyes M. & Solache-Ríos M. (2012). The infl uence of pH on the stability constants of lanthanum and europium complexes with humic acids. J. Radioanal. Nucl. Chem. 293 273-278. DOI: 10.1007/s10967-012-1730-1.

  • 14. Secretaría del Medio Ambiente y Recursos Naturales Comisión Nacional del Agua Norma Ofi cial Mexicana. (2009 18 August). NOM-014-CONAGUA-2003 Requisitos para la recarga artifi cial de acuíferos con agua residual tratada. Diario Ofi cial de la Federación. Received 2015 from

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 136 5
PDF Downloads 173 127 10