Modelling of the soft X-ray tungsten spectra expected to be registered by GEM detection system for WEST

Łukasz Syrocki 1 , 2 , Ewa Szymańska 3 , Katarzyna Słabkowska 4 , 5 , Marek Polasik 3 , 4 ,  und Grzegorz Pestka 2
  • 1 Institute of Plasma Physics and Laser Microfusion, 23 Hery Str., 01-497 Warsaw, Poland Poland
  • 2 Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
  • 3 Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
  • 4 Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw, Poland Poland
  • 5 Faculty of Chemistry, Nicolaus Copernicus University in Toruń,87-100 Toruń, Poland


In the future International Thermonuclear Experimental Reactor (ITER), the interaction between the plasma and the tungsten chosen as the plasma-facing wall material imposes that the hot central plasma loses energy by X-ray emission from tungsten ions. On the other hand, the registered X-ray spectra provide alternative diagnostics of the plasma itself. Highly ionized tungsten emits extremely complex X-ray spectra that can be understood only after exhaustive theoretical studies. The detailed analyses will be useful for proper interpretation of soft X-ray plasma radiation expected to be registered on ITER-like machines, that is, Tungsten (W) Environment in Steady-state Tokamak (WEST). The simulations of the soft X-ray spectra structures for tungsten ions have been performed using the flexible atomic code (FAC) package within the framework of collisional-radiative (CR) model approach for electron temperatures and densities relevant to WEST tokamak.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • 1. Pütterich, T., Neu, R., Dux, R., Whiteford, A. D., O’Mullane, M. G., & ASDEX Upgrade Team. (2008). Modelling of measured tungsten spectra from ASDEX Upgrade and predictions for ITER. Plasma Phys. Control. Fusion, 50, 085016. DOI: 10.1088/0741-3335/50/8/085016.

  • 2. Neu, R., Fournier, K. B., Bolshukhin, D., & Dux, R. (2001). Spectral lines from highly charged tungsten ions in the soft-X-ray region for quantitative diagnostics of fusion plasmas. Phys. Scr., T92, 307. DOI: 10.1238/Physica.Topical.092a00307.

  • 3. O’Mullane, M. G., Summers, H. P., Whiteford, A. D., Meigs, A. G., Lawson, K. D., Zastrow, K. -D., Barnsley, R., Coffey, I. H., & JET-EFDA Contributors. (2006). Atomic modeling and instrumentation for measurement and analysis of emission in preparation for the ITER-like wall in JET. Rev. Sci. Instrum., 77, 10F520.

  • 4. Ralchenko, Y., Tan, J. N., Gillaspy, J. D., & Pomeroy, J. M. (2006). Accurate modeling of benchmark x-ray spectra from highly charged ions of tungsten. Phys. Rev. A, 74, 042514.

  • 5. Clementson, J., Beiersdorfer, P., Brown, G. V., & Gu, M. F. (2010). Spectroscopy of M-shell x-ray transitions in Zn-like through Co-like W. Phys. Scr., 81, 015301. DOI: 10.1088/0031-8949/81/01/015301.

  • 6. Słabkowska, K., Polasik, M., Szymańska, E., Starosta, J., Syrocki, Ł., Rzadkiewicz, J., & Pereira, N. R. (2014). Modeling of the L and M x-ray line structures for tungsten in high-temperature tokamak plasmas. Phys. Scr., T161, 014015. DOI: 10.1088/0031-8949/2014/ T161/014015.

  • 7. Słabkowska, K., Polasik, M., Syrocki, Ł., Szymańska, E., Rzadkiewicz, J., & Pereira, N. R. (2015). Modeling of the M X-ray line structures for tungsten and L X-ray line structures for molybdenum. J. Phys.-Conf. Ser., 583, 012031. DOI: 10.1088/1742-6596/583/1/012036.

  • 8. Słabkowska, K., Rzadkiewicz, J., Syrocki, Ł., Szymańska, E., Shumack, A., Polasik, M., Pereira, N. R., & JET Contributors. (2015). On the interpretation of high-resolution x-ray spectra from JET with an ITER-like wall. J. Phys. B-At. Mol. Opt. Phys., 48, 144028. DOI: 10.1088/0953-4075/48/14/144028.

  • 9. Beiersdorfer, P., Clementson, J., Dunn, J., Gu, M. F., Morris, K., Podpaly, Y., Wang, E., Bitter, M., Feder, R., Hill, K. W., Johnson, D., & Barnsley, R. (2010). The ITER core imaging x-ray spectrometer. J. Phys. B-At. Mol. Opt. Phys., 43, 144008. DOI: 10.1088/0953-4075/43/14/144008.

  • 10. Gu, M. F. (2008). The fl exible atomic code. Can. J. Phys., 86(5), 675-689. DOI: 10.1139/p07-197.

  • 11. Kano, K., Suzuki, M., & Akatsuka, H. (2000). Spectroscopic measurement of electron temperature and density in argon plasmas based on collisional-radiative model. Plasma Sources Sci. Technol., 9, 314. DOI: 10.1088/0963-0252/9/3/309.

  • 12. Sauli, F. (1997). GEM: A new concept for electron amplifi cation in gas detectors. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 386, 531-534. DOI: 10.1016/S0168-9002(96)01172-2.

  • 13. Chernyshova, M., Czarski, T., Dominik, W., Jakubowska, K., Rzadkiewicz, J., Scholz, M., Pozniak, K., Kasprowicz, G., & Zabolotny, W. (2014). Development of GEM gas detectors for X-ray crystal spectrometry. JINST, 9, C03003. DOI: 10.1088/1748-0221/9/03/C03003.

  • 14. Rzadkiewicz, J., Dominik, W., Scholz, M., Chernyshova, M., Czarski, T., Czyrkowski, H., Dabrowski, R., Jakubowska, K., Karpinski, L., Kasprowicz, G., Kierzkowski, K., Pozniak, K., Salapa, Z., Zabolotny, W., Blanchard, P., Tyrrell, S., Zastrow, K. -D., & JET EFDA Contributors. (2013). Design of T-GEM detectors for X-ray diagnostics on JET. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 720, 36-38. DOI: 10.1016/j. nima.2012.12.041.


Zeitschrift + Hefte