Comparison of silicon drift detectors made by Amptek and PNDetectors in application to the PHA system for W7-X

Open access


The paper presents comparison of two silicon drift detectors (SDD), one made by Amptek, USA, and the second one by PNDetector, Germany, which are considered for a soft X-ray diagnostic system for W7-X. The sensitive area of the first one is 7 mm2 × 450 μm and the second one is 10 mm2 × 450 μm. The first detector is cooled by a double-stage Peltier element, while the second detector is cooled by single-stage Peltier element. Each one is equipped with a field-effect transistor (FET). In the detector from Amptek, the FET is mounted separately, while in the detector from PNDetector, the FET is integrated on the chip. The nominal energy resolution given by the producers of the first and the second one is 136 eV@5.9 keV (at -50°C) and 132 eV@5.9 keV (at -20°C), respectively. Owing to many advantages, the investigated detectors are good candidates for soft X-ray measurements in magnetic confinement devices. They are suitable for soft X-ray diagnostics, like the pulse height analysis (PHA) system for the stellarator Wendelstein 7-X, which has been developed and manufactured at the Institute of Plasma Physics and Laser Microfusion (IPPLM), Warsaw, in collaboration with the Max Planck Institute for Plasma Physics (IPP), Greifswald. The diagnostic is important for the measurements of plasma electron temperature, impurities content, and possible suprathermal tails in the spectra. In order to choose the best type of detector, analysis of technical parameters and laboratory tests were done. Detailed studies show that the most suitable detector for the PHA diagnostics is the PNDetector.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bosch H. -S. Wolf R. C. Andreeva T. Baldzuhn J. Birus D. Bluhm T. Bräuer T. Braune H. Bykov V. Cardella A. & et al. (2013). Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X. Nucl. Fusion 53 126001. DOI: 10.1088/0029-5515/53/12/126001.

  • 2. König R. Baldzuhn J. Biel W. Biedermann C. Bosch H. S. Bozhenkov S. Bräuer T. Brotas de Carvalho B. Burhenn R. Buttehschön B. Cseh G. Czarnecka A. Endler M. Erckmann V. Estrada T. Geiger J. Grulke O. Hartmann D. Hathiramani D. Hirsch M. Jabłonski S. Jakubowski M. Kaczmarczyk J. Klinger T. Klose S. Kocsis G. Kornejew P. Krämer-Flecken A. Kremeyer T. Krychowiak M. Kubkowska M. Langenberg A. Laqua H. P. Laux M. Liang Y. Lorenz A. Marchuk A. O. Moncada V. Neubauer O. Neuner U. Oosterbeek J. W. Otte M. Pablant N. Pasch E. Pedersen T. S. Rahbarnia K. Ryc L. Schmitz O. Schneider W. Schuhmacher H. Schweer B. Stange T. Thomsen H. Travere J. -M. Szepesi T. Wenzel U. Werner A. Wiegel B. Windisch T. Wolf R. Wurden G. A. Zhang D. Zimbal A. Zoletnik S. & W7-X Team. (2015). The set of diagnostics for the first operation campaign of the Wendelstein 7-X stellarator. J. Instrum. 10 P10002.

  • 3. Kubkowska M. Czarnecka A. Figacz W. Jabłoński S. Kaczmarczyk J. Krawczyk N. Ryć L. Biedermann C. Koenig R. Thomsen H. Weller A. & W7-X Team. (2015). Laboratory tests of the Pulse Height Analysis System for Wendelstein 7-X. J. Instrum. 10 P10016.

  • 4. Lechner P. Fiorini C. Hartmann R. Kemmer J. Krause N. Leutenegger P. Longoni A. Soltau H. Stötter D. Stötter R. Strüder L. & Weber U. (2001). Silicon drift detectors for high count rate X-ray spectroscopy at room temperature. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 458 281-287.

  • 5. El-Taher A. (2012). Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF). Appl. Radiat. Isot. 70 350-354. DOI: 10.1016/j.apradiso.2011.09.008.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.585
5-year IMPACT FACTOR: 0.513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 77 1
PDF Downloads 202 119 1